数据挖掘中的聚类算法研究
1摘要聚类分析是数据挖掘的重要组成部分,近年来在该领域的研究取得了长足的发展。通过对现有的聚类算法的研究,如基于划分的聚类方法、基于层次的聚类方法、基于密度的聚类方法、基于网格的聚类方法、基于模型的聚类方法以及整合了多种聚类算法的综合算法,可以发现,这些算法在特定的领域中、特定的情形下取得了良好的效果。但由于数据集的增大和数据复杂性的提高,聚类算法无论是从算法运算的时间上,还是从算法本身所需要的存储空间上都急剧的膨胀,使得在现有资源下很难实现数据集的最终聚类。本论文在对各种算法深入分析的基础上,尤其在对基于密度的聚类算法、基于层次的聚类算法和基于划分的聚类算法的深入研究的基础上,提出了一种新的...
2024-11-19
653.46KB 56 页 4
4
15积分