USST_Arts_117101350 超大直径泥水平衡盾构穿越高危易爆乙烯管变形及控制研究

VIP免费
3.0 牛悦 2024-11-11 4 4 2.88MB 94 页 15积分
侵权投诉
随着城市建设的不断展,新建工程的施扰动给城市既有建筑环境带来了
越来越多的潜在威胁。作为城市现代化建设重要组成部分的地下隧道施工,往往
不可避免地会穿越大量的地下管线,而地下管线安全问题也一直是地下工程中关
键性技术问题之一。为了地下隧道施工能在安全有序进行的同时,保证地下管线
的正常使用,隧道施工中对邻近管线的影响及其控制问题需要不断进行深入研究。
本文以上海虹梅南路越江隧道工程作为工程背景,基于已有的理论研究成果及工
程现场实测数据,着重研究超大直径泥水平衡盾构隧道施工过程中,地层沉降变
形的规律以及引发的地下管线的变形及其安全控制问题。
在实际工程中,局限于很多现场因素,管线形的监测等工作较为困难,并
且隧--管三者作用关系也受到诸多因素的影响。在管线安全判别及控制问题中,
除了利用地下管线的直接监测结果对其进行安全状态判定,若根据管-隧空间关系,
通过控制地表沉降来间接控制管线的变形,形成一种管线安全判别及控制方法,
即在不同管-隧相对位置下,根据管线的允许变形值反推地表的允许变形值,从而
判断管线的安全状态,这样将会大大降低工程中管线安全控制的难度。除此之外,
在工程中,利用实时的管线监测数据实现对管线安全状态的实时判定,也将为盾
构隧道施工中地下管线的安全运行提供保障。围绕这些问题,本文主要研究内容
如下:
1. 在已有的理论研究基础上,形成一种利用地表沉降间接实现对地下管线的
安全控制及判定方法,即在不同管-隧空间位置关系下,确定地表最大沉降允许值,
将其作为目标控制值,进而对地下管线的变形进行控制;
2. 运用有限元数值模拟,进行泥水盾构隧道施工对邻近地下管线位移影响
参数敏感性分析,主要包括在不同管-隧相对位置关系下,管线埋深、管材、下卧
加固体刚度、-隧相对偏移距离、以及管-隧夹角等因素的影响规律,为类似工程
中的地下管线安全控制提供技术参考;
3. 以实际工程为背景,利用三次样条插值方法,对盾构隧道工程中地下管线
的位移监测结果进行曲线拟合,并进一步得到管线曲率,从而实现地下管线的安
全性判别。
关键词:隧道施工 地下管线 安全判别 安全控制 有限元数值模拟
ABSTRACT
With the continuous development of urban construction, construction
disturbance caused by new construction work brings more and more potential threat
for existing built environment. As an important part of city modernization
construction, tunneling construction often inevitably cross a great number of buried
pipelines, while safety problem for buried pipeline has been one of the key technical
problems of underground engineering. It is required to study continuous in-depth that
the effect of tunneling construction on nearby pipeline and its control in order to
ensure tunneling construction proceeds safely and orderly without affecting normal
operation of the pipelines. In this paper, the analysis will be based on the existing
theoretical research and field data, taking the cross-river tunneling engineering of
South Hongmei Road as reference, and the studies mainly includes the rules of strata
deformation and buried pipeline deformation induced by super large-diameter slurry
shield tunneling and the problem of its safety control.
Limited to many actual engineering factors, pipeline deformation monitoring is a
relatively difficult work, while the tunnel-soil-pipe interaction relationship is also
affected by many factors. In pipeline safety judgment and control problem, it will
greatly reduce the difficulty if it is possible to form a safety criterion and control
method to indirect control the pipeline, by controlling surface subsidence deformation
according to the tunneling-pipe space relation instead of using pipe monitoring results
directly. With different tunnel-pipe relative location, the allowed value of surface
deformation will be calculated by allowed value of pipeline deformation, judging the
pipeline safety status. Beyond that, the implementation of real-time pipeline safety
status judgment, using the monitoring data in practical engineering, will provide
guarantees for safe operation of pipelines crossed by shield tunneling construction.
Concentrating on these problems, the main research contents are as follows
1. With the existing theory research, an indirect safety criterion and control method
based on surface subsidence deformation will be formed. The allowed value of surface
deformation with different tunnel-pipe relative location will be calculated as a target
control values to control the deformation of buried pipelines.
2. Sensitivity of influence parameters of nearby pipeline deformation caused by
tunneling construction is analyzed using FEM numerical simulation, mainly including
the influence rules of pipeline buried depth, material, underlying reinforcing layer,
tunnel-pipe offset distance, and tunnel-pipe angle and other parameters with different
tunnel-pipe relative location, which can provide technical reference for buried pipeline
safety control in subsequent engineering.
3. Taking a practical engineering project as reference, the curvature of the target
pipeline will be figured out using cubic spline interpolation method according to a series
of vertical deformation monitoring data, so as to realize the safety criterion for buried
pipelines.
Key Word: tunneling construction, buried pipelines, safety criterion,
safety control, FEM numerical simulation
中文摘要
ABSTRACT
第一章 绪论 ................................................................................................................ 1
1.1 引言 ................................................................................................................... 1
1.1.1 研究背景 .................................................................................................... 1
1.1.2 研究意义 .................................................................................................... 2
1.2 国内外的研究现状及评价 ............................................................................... 2
1.2.1 盾构隧道施工引起的土层位移 ................................................................ 2
1.2.2 地下管线相关研究 .................................................................................... 3
1.2.3 盾构隧道施工对既有管线的影响 ............................................................ 4
1.2.4 研究现状评价 ............................................................................................ 7
1.3 本文的研究目的、内容、思路和方法 ........................................................... 8
1.3.1 研究目的 .................................................................................................... 8
1.3.2 研究思路及方法 ........................................................................................ 8
1.3.3 研究内容 .................................................................................................... 9
1.4 总结 ................................................................................................................. 10
第二章 --管相互作用理论研究 ........................................................................ 11
2.1 隧道施工引起的土层位移 .............................................................................. 11
2.1.1 地表沉降理论计算 ................................................................................... 11
2.1.2 管线所在地层沉降计算 .......................................................................... 13
2.2 管线变形理论分析 ......................................................................................... 14
2.2.1 弹性地基梁模型 ...................................................................................... 14
2.2.2 管线变形参数 .......................................................................................... 14
2.2.3 管线变形的计算原理 .............................................................................. 15
2.3 地表沉降与管线变形的关系 ......................................................................... 15
2.3.1 管线弯矩与地表最大沉降关系 .............................................................. 16
2.3.2 管线的曲率与地表最大沉降的关系 ...................................................... 16
2.4 总结 ................................................................................................................. 20
第三章 隧道开挖对地下管线的影响因素分析 ...................................................... 21
3.1 有限元模型的建立 ......................................................................................... 21
3.1.1 基本假定 .................................................................................................. 21
3.1.2 土体模型详情 .......................................................................................... 21
3.1.3 模型可行性验证 ...................................................................................... 23
3.2 管线与隧道轴线正交 ..................................................................................... 25
3.2.1 管线埋深变化的影响分析 ...................................................................... 25
3.2.2 管线材质变化的影响分析 ...................................................................... 29
3.2.3 管线下卧加固层变化影响分析 .............................................................. 32
3.3 管线与隧道轴线平行 ..................................................................................... 35
3.3.1 管线竖向位移 .......................................................................................... 36
3.3.2 管线水平位移 .......................................................................................... 37
3.3.3 管线弯矩 .................................................................................................. 37
3.4 管线与隧道轴线斜交 ..................................................................................... 37
3.4.1 管线竖向位移 .......................................................................................... 38
3.4.2 管线水平位移 .......................................................................................... 38
3.4.3 管线弯矩 .................................................................................................. 39
3.5 总结 ................................................................................................................. 39
第四章 盾构隧道工程中地下管线的安全控制 ...................................................... 41
4.1 地下管线安全控制的主要内容 ..................................................................... 41
4.2 地下管线的现场监测与保护 ......................................................................... 42
4.2.1 管线现场监测的一般步骤 ...................................................................... 42
4.2.2 常用的管线现场监测方法 ...................................................................... 42
4.2.3 地下管线的保护 ...................................................................................... 43
4.3 已有的管线安全判别方法 ............................................................................. 43
4.3.1 刚性接头管线的安全判别 ...................................................................... 43
4.3.2 柔性管的安全判别 .................................................................................. 44
4.4 基于管线监测数据实现管线的安全判别 ..................................................... 45
4.4.1 基本理论依据 .......................................................................................... 45
4.4.2 三次样条插值的 EXCEL 实现方法 ....................................................... 46
4.4.3 三次样条插值的 MATLAB 实现方法 .................................................... 47
4.4.4 工程计算示例 .......................................................................................... 47
4.5 基于地表监测实现管线安全监控 ................................................................. 51
4.5.1 基本思路 .................................................................................................. 51
4.5.2 地表最大沉降控制值 .............................................................................. 52
4.5.3 工程算例 .................................................................................................. 52
4.6 总结 ................................................................................................................. 54
第五章 工程实例研究分析 ...................................................................................... 55
5.1 工程背景 ......................................................................................................... 55
5.1.1 基本工况概述 .......................................................................................... 55
5.1.2 金山-吴泾乙烯管及其保护措施 ............................................................. 55
5.1.3 管线位置及测点布置情况 ...................................................................... 57
5.2 部分地表沉降及施工参数分析 ..................................................................... 59
5.2.1 地表横断面沉降槽 .................................................................................. 60
5.2.2 地表历时沉降 .......................................................................................... 61
5.2.3 部分施工参数分析 .................................................................................. 62
5.3 模拟钢管实验研究 ......................................................................................... 65
5.3.1 对应位置地表竖向位移 .......................................................................... 65
5.3.2 模拟钢管竖向位移 .................................................................................. 65
5.3.3 钢管位移与地表沉降对比 ...................................................................... 66
5.4 乙烯管实测数据分析 ..................................................................................... 66
5.4.1 平行研究段 .............................................................................................. 66
5.4.2 斜交段分析 .............................................................................................. 71
5.5 有限元数值计算分析 ..................................................................................... 74
5.5.1 模型的建立 .............................................................................................. 74
5.5.2 计算结果分析 .......................................................................................... 76
5.6 总结 ................................................................................................................. 80
第六章 结论与展望 .................................................................................................. 81
6.1 结论 ................................................................................................................. 81
6.2 研究展望 ......................................................................................................... 82
参考文献 .................................................................................................................... 84
在读期间公开发表的论文和承担科研项目及取得成果 ........................................ 89
致谢 ............................................................................................................................ 90
摘要:

摘要随着城市建设的不断发展,新建工程的施工扰动给城市既有建筑环境带来了越来越多的潜在威胁。作为城市现代化建设重要组成部分的地下隧道施工,往往不可避免地会穿越大量的地下管线,而地下管线安全问题也一直是地下工程中关键性技术问题之一。为了地下隧道施工能在安全有序进行的同时,保证地下管线的正常使用,隧道施工中对邻近管线的影响及其控制问题需要不断进行深入研究。本文以上海虹梅南路越江隧道工程作为工程背景,基于已有的理论研究成果及工程现场实测数据,着重研究超大直径泥水平衡盾构隧道施工过程中,地层沉降变形的规律以及引发的地下管线的变形及其安全控制问题。在实际工程中,局限于很多现场因素,管线变形的监测等工作较为...

展开>> 收起<<
USST_Arts_117101350 超大直径泥水平衡盾构穿越高危易爆乙烯管变形及控制研究.pdf

共94页,预览10页

还剩页未读, 继续阅读

作者:牛悦 分类:高等教育资料 价格:15积分 属性:94 页 大小:2.88MB 格式:PDF 时间:2024-11-11

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 94
客服
关注