太阳能光伏光热一体化组件的应用特性研究

VIP免费
3.0 牛悦 2024-11-11 4 4 3.67MB 100 页 15积分
侵权投诉
合理高效的用能已经不能及时填补社会经济发展所带来的能源紧张与环境污
染等问题,所以开发利用新能源显得尤为重要。针对光伏发电系统普遍推广的应
用现状及高效利用新能源的思想,提出太阳能光伏光热一体化(PV/T)组件的应
用研究。本文根据上海市日照条件,分析了 PV/T组件最佳倾角的计算方法并得出
并网系统最佳倾角为 22°,并对 PV/T系统中 PV/T组件、逆变器、保温水箱及循
环水泵等设备进行选型设计。同时设计光伏方阵为同等功率的固定式光伏发电
FPV系统和双轴追踪式光伏发电TPV系统作为参照。最后根据研究目的制
定了实验方案,并在此基础上介绍了实验装置的应用。
PV/T组件应用特性实验研究表明,本文提出的 PV/T值为
1.1m³/h 时,并讨论了流量取值范围对组件综合效率的影响。对不同循环水温下,
PV/T 组件相对 FPV 组件的发电量减小不到 5%,随着循环水温度的升高日平均热
效率最高下降 17%相同气象条件下,循环水起始温度为 23℃和 28,日得热量
相差 15%日发电量相差 7%本实验装置在不同季节中,起始水温小于等于室外
平均温度时,晴天可以将循环水升温 1518℃,多云天气可以将水升温 1013℃,
阴天可以将水升温 36℃,雨天基本不会加热热水, PV/T组件日平均热效率 28%
左右。本实验装置中当日辐照总量<2 kWh/㎡时,TPV 系统比 FPV 系统的日发电
量低 3%左右;当日辐照总量>4 kWh/㎡时,TPV 系统比 FPV 系统日发电量高
12%25%PV/T系统比 FPV 系统日发电量少 2%5%上海地区进行 PV/T
统理论发电量计算时需要乘以一个温度影响损失因子 0.95 进行修正,PV/T组件比
FPV 组件年发电量低 4%TPV 组件比 FPV 组件年发电量高 19%为上海地区 PV/T
系统及 FPV 系统设计提供依据。PV/T系统年得热量为 9700MJ相对于 FPV 系统
增加的投资回收期需要 10 年,经济性不高,但从节能效益看,不仅相对于 FPV
统发电可以减少相应污染物的排放,制热水所得的热量在寿命期内也可以减少
15.8t 二氧化碳的排放。
最后根据 PV/T组件的(火用)效率分析,得出 PV/T组件得热(火用)效率
70%左右;根据实测数据分析结论提出 PV/T与空气源热泵联合制热水系统,
该方式比同等条件下空气源热泵单独制热水节80%的运行费用。本文的实验数
据为 PV/T组件将来的应用和推广提供借鉴和参考。
关键词:太阳能 光伏光热 PV/T PV 电效率 热效率 (火用)
ABSTRACT
Reasonable and efficient energy use can’t make up the by-product problems of
economic growth, such as energy shortage, environment pollution and so on. This
makes it more urgent to take use of new energy. Considering the current condition that
the photovoltaic system is installed enormously, the paper puts forward application
study of a hybrid photovoltaic/thermal (PV/T) solar system. The article firstly analysed
computing method of the best pit angle according to sunlight condition of Shanghai and
worked out that if connect to grid dip angle 22°is best for the yearly operation PV/T
system. And the paper also did the selection of design for the PV/T unit, inverter, water
tank and circulate pump. Meanwhile, the paper designed photovoltaic phalanx for the
same power stationary photovoltaic power generation (FPV) system and twin screw
tracking type photovoltaic power generation (TPV) system as a reference. Finally, the
experiment scheme was made according to the research purpose, and on this basis, the
paper gave the device application.
PV/T module application characteristics experimental study showed the best flow
value of PV/T collector system was 1.1m³/h, at the same time, the paper also discussed
the influence of the flow value range on the PV/T unit. Under the different recycled
water temperature, the amount would reduce less than 5% compared to FPV system. As
the rise of recycled water temperature, the average thermal efficiency would highest fell
by 17%.Under the same environmental conditions, the initial temperature of circulating
water was23 and30,and the difference in daily heating and daily electric energy
production was 15 percent and 7 percent. In this experiment system different seasons,
when the temperature of circulating water was approximate to circulating water, we
could increase the temperature of circulating water to 15-18 on a clear day. On a
cloudy day, we could increase the temperature of circulating water to 10-13 and on
an overcast sky, we could increase it to 3-6.On a rainy day, we almost needn’t heat
the water. It can meet the different needs of different summer days, the all-day average
thermal efficiency of PV/T components was almost at 28%.In this experiment system
when total amount of irradiation was short of 2 kWh/, the generating capacity of TPV
system would be lower about 3 percent than FPV system. When the total amount of
irradiation was greater than 4 kWh / , the daily electricity of TPV system was higher
about 12-25 percent than the FPV system . PV/T system was less 2% ~ 5%than FPV
system in daily electricity. The capacity of the theory calculation should fix the
photovoltaic power generation with a temperature effects coefficient about 0.95.And the
power generation of FPV was higher about 4 percent than the PV/T module ,while TPV
module was higher about 19 percent than FPV module. It could provide a basis for the
design of PV/T system and FPV system in Shanghai. The total heat gaining in one year
of FPV system was 9700MJ .Compared with FPV system, the payback period of PV/T
system was 10 years longer, so the economy performance seemed not very high. But for
energy efficiency, PV/T system not only could reduce the corresponding pollutant
emissions, but also could reduce 15.8 tons of carbon dioxide emissions by using the
heat of producing hot water in its lifetime.
It was found that the heating efficiency of PV/T module was about 70 percent
according to the analysis of PV/T module efficiency. At the same time, according to the
experimental data analysis, a PV/T system and air source heat pump hot water coalition
experimental apparatus were designed. It could save about 80 percent of the operation
cost than heating only by air source heat pump .The experimental data in the paper
provide reference for the PV/T module in its future photovoltaic system.
Key Words: SolarEnergyPhotovoltaic and photo-thermalPV/T
PVElectrical EfficiencyThermal EfficiencyExergy
中文摘要
ABSTRACT
第一章 .............................................................................................................. 1
1.1 课题研究背景 ................................................................................................... 1
1.1.1 我国太阳能资源分布情况 .................................................................... 1
1.1.2 太阳能光伏发电发展情况 .................................................................... 2
1.2 太阳能光伏发电系统及光伏光热一体化系统简述 ....................................... 3
1.2.1 太阳能光伏发电系统应用的基本形式 ................................................ 3
1.2.2 太阳能光伏光热一体化系统 ................................................................ 4
1.2.3 太阳能光伏发电系统面临的问题 ........................................................ 5
1.3 太阳能光伏发电系统及光伏光热一体化组件应用研究现状 ....................... 6
1.3.1 太阳能光伏发电系统应用研究现状 .................................................... 6
1.3.2 光伏光热一体化组件应用研究现状 .................................................... 7
1.4 本课题研究的主要内容 ................................................................................... 8
1.5 本章小结 ........................................................................................................... 9
第二章 太阳能光伏光热发电实验系统设计 ............................................................ 10
2.1 设计原则及实验研究所在地概况 ................................................................. 10
2.1.1 设计原则 .............................................................................................. 10
2.1.2 实验研究所在地概况 .......................................................................... 10
2.2 太阳能光伏光热发电实验系统方案确定 ...................................................... 11
2.2.1 实验系统方案确定 ............................................................................... 11
2.2.2 实验系统基本组成 .............................................................................. 12
2.2.3 实验系统工作原理 .............................................................................. 13
2.3 太阳能光伏光热发电实验系统选型设计 ..................................................... 14
2.3.1 PV/T 组件方阵倾角的确定[29-31] ......................................................... 14
2.3.2 PV/T 组件方阵容量确定 [2932-33] ....................................................... 17
2.3.3 PV/T 组件方阵的选型设计 ................................................................. 19
2.3.4 并网逆变器的选型设计 ...................................................................... 23
2.3.5 供电系统的基础建设[32-34] .................................................................. 24
2.3.6 保温水箱容量确定 .............................................................................. 24
2.3.7 集热循环水泵选型设计 ...................................................................... 25
2.3.8 水箱恒温水系统选型设计 .................................................................. 25
2.4 太阳能光伏发电实验系统选型设计 ............................................................. 28
2.5 太阳能光伏光热系统及光伏系统年发电量理论计算 ................................. 28
2.6 本章小结 ......................................................................................................... 30
第三章 太阳能光伏光热发电系统实验方案设计 .................................................... 31
3.1 实验目的及实验内容 ..................................................................................... 31
3.1.1 实验目的 .............................................................................................. 31
3.1.2 实验内容 .............................................................................................. 32
3.2 实验装置的介绍 ............................................................................................. 34
3.2.1 实验装置组成 ...................................................................................... 34
3.2.2 实验系统的电气控制系统 .................................................................. 36
3.2.3 实验系统数据采集 .............................................................................. 37
3.2.4 实验室采集软件 .................................................................................. 41
3.3 本章小结 ......................................................................................................... 43
第四章 实验数据处理与分析 .................................................................................... 44
4.1 PV/T 组件在不同流量下制热水的性能实验 ................................................ 44
4.1.1 流量 0.7m³/h 条件下制热水的实验分析 ............................................ 44
4.1.2 流量 1.1m³/h 条件下制热水的实验分析 ............................................ 47
4.1.3 流量 1.3m³/h 条件下制热水的实验分析 ............................................ 49
4.1.4 不同流量下制热水的综合实验分析 .................................................. 50
4.2 PV/T 组件在不同供热模式下的性能实验 .................................................... 52
4.2.1 水温 40℃条件下的性能实验分析 ..................................................... 52
4.2.2 水温 30℃条件下的性能实验分析 ..................................................... 54
4.2.3 水温 20℃条件下的性能实验分析 ..................................................... 56
4.3 PV/T 组件全天性能实验分析 ........................................................................ 58
4.4 PV/T 组件在不同环境下的性能实验分析 .................................................... 60
4.4.1 不同室外天气下系统应用实验分析 .................................................. 61
4.4.2 不同季节晴好天气里系统应用实验分析 .......................................... 62
4.5 PV/T 组件同 PV 组件应用对比实验分析 ..................................................... 65
4.5.1 组件特性应用对比实验分析 .............................................................. 65
4.5.2 系统发电量对比分析 .......................................................................... 67
4.5.3 PV/T 系统理论与实测发电量对比实验分析 ..................................... 69
4.6 PV/T 组件相对 PV 组件的节能环保效益实验分析 ..................................... 70
4.6.1 节能性与经济性实验分析 .................................................................. 70
4.6.2 环保综合效益实验分析 ...................................................................... 73
4.7 本章小结 ......................................................................................................... 74
第五章 PV/T-ACHP 联合制热水设计构想及分析 ................................................... 77
5.1 PV/T 组件(火用)效率分析 ........................................................................ 77
5.1.1 (火用)分析基本理论[40-42] .............................................................. 77
5.1.2 PV/T 组件(火用)效率分析[41] ......................................................... 79
5.2 PV/T-ACHP 系统设计 ..................................................................................... 82
5.2.1 系统方案思路 ...................................................................................... 82
5.2.2 系统工作原理 ...................................................................................... 83
5.2.3 系统设计 .............................................................................................. 84
5.3 PV/T-ACHP 系统制热水经济效益 ................................................................. 85
5.4 本章小结 ......................................................................................................... 86
第六章 结论与展望 .................................................................................................... 88
6.1 主要研究成果 ................................................................................................. 88
6.2 需要进一步开展的工作 ................................................................................. 90
6.3 展望 ................................................................................................................. 90
参考文献 ........................................................................................................................ 92
在读期间公开发表的论文和承担科研项目及取得成果 ............................................ 95
一、论文 ................................................................................................................ 95
二、专利 ................................................................................................................ 95
三、科研项目 ........................................................................................................ 96
............................................................................................................................ 97
摘要:

摘要合理高效的用能已经不能及时填补社会经济发展所带来的能源紧张与环境污染等问题,所以开发利用新能源显得尤为重要。针对光伏发电系统普遍推广的应用现状及高效利用新能源的思想,提出太阳能光伏光热一体化(PV/T)组件的应用研究。本文根据上海市日照条件,分析了PV/T组件最佳倾角的计算方法并得出并网系统最佳倾角为22°,并对PV/T系统中PV/T组件、逆变器、保温水箱及循环水泵等设备进行选型设计。同时设计光伏方阵为同等功率的固定式光伏发电(FPV)系统和双轴追踪式光伏发电(TPV)系统作为参照。最后根据研究目的制定了实验方案,并在此基础上介绍了实验装置的应用。PV/T组件应用特性实验研究表明,本文提出...

展开>> 收起<<
太阳能光伏光热一体化组件的应用特性研究.pdf

共100页,预览10页

还剩页未读, 继续阅读

作者:牛悦 分类:高等教育资料 价格:15积分 属性:100 页 大小:3.67MB 格式:PDF 时间:2024-11-11

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 100
客服
关注