地铁站台活塞风与空调送风非等温耦合特性研究

3.0 牛悦 2024-11-11 4 4 2.17MB 84 页 15积分
侵权投诉
I
在地铁站台非屏蔽门系统中,地铁列车在隧道内运行产生的活塞风对地铁站
台气流组织影响显著。送风射流受站台间歇性活塞风作用的机理研究是从地铁环
控区域气流组织实际状态中抽象出来的科学问题,其广泛存在于地铁站台层、站
厅层、地铁走廊和地铁中转站等区域。送风射流与站台活塞风相互耦合的现象,
根据送风射流中空调系统开启与否,可分为等温耦合和非等温耦合两种工况,本
文在前人等温耦合的基础上,研究非等温耦合现象。恰当地控制和利用活塞风及
送风射流的相关参数,关系到广大乘客的舒适性和身体健康,对地铁热环境的舒
适性和节能性有很大作用。稳态送风射流(空调送风)与间歇性非稳态受迫气流
(活塞风)相互耦合是地铁站台热环境气流组织的典型特征,加强对其耦合机理
的研究,具有广泛的现实意义。
论文聚焦于非屏蔽门系统中站台活塞风与空调送风射流非等温耦合速度场和
温度场的机理及特性研究,综合运用了理论建模、液体缩尺模型实验和现场实测
等研究方法。其中,理论上建立了地铁活塞风与空调送风非等温耦合射流、速度
场和温度场的数学模型,具体特征参数包括:耦合射流轨迹曲线、轨迹与水平面
的夹角、质量平均速度、质量平均温度和轴心温度等参数,根据活塞风在站台上
附壁射流的运动理论模型,以地铁站台上不同位置 A17.5,6)、 B60,6)两点处
空调送风口作为研究对象,并由理论模型求解出活塞风作用周期内耦合射流速度
场和温度场各典型参数的动态变化规律,比较了两股射流等温耦合与非等温耦合
主要特征参数的区别,液体模型试验数据结果验证了两股射流非等温耦合速度场
和温度场理论模型的正确性。
在模型试验中,针对非等温耦合射流的温度场,把雷诺数和阿基米德数分别
作为速度场和温度场的相似准则数,通过实验模型与原型中的主要准则数相等,
计算出实验台尺寸,气体温度与盐水密度对应关系,搭建比例尺为 1:16 的盐水模
型实验台。借助电导率仪测试盐水电导率间接表征空气温度。在夏季空调季节对
实际建筑上海某地铁站站台层进行现场实测,测出站台层地铁活塞风与典型空调
送风射流非等温耦合的状态特征参数,如耦合射流的轨迹、速度场和温度场等,
与模型实验数据进行对比,验证模型实验台的准确性。
论文以地铁环控车站内部最典型的气流组织——站台活塞风与空调送风射流
的相互耦合为研究对象,建立了站台空调送风射流在活塞风作用下的非等温耦合
射流的温度场和速度场数学模型,这部分内容填补了现有理论研究的空白。相关
II
机理研究进一步完善了地铁环控节能舒适运行所需理论,两股射流非等温耦合特
性研究架起了理论研究与实际应用之间的桥梁,为地铁热环境的舒适节能服务,
为地铁交通可持续发展和城市建设服务,具有重要的科学意义。
关键词:站台活塞风 空调送风射流 非等温耦合 温度场理论建
水缩尺模型实验
III
ABSTRACT
In the non-platform screen door system, piston wind from the subway tunnel
influences the airflow of the subway platform greatly. The mechanical research of jets
influenced by intermittent piston wind is a scientific issue abstract from the actual state
of airflow in the subway environmental control area. It widely exists in the subway
platform, station hall, corridor, metro transit station and other large spaces. According to
the air conditioning system open or not, the mutual coupling of supplying air jet and
piston wind can be divided into two conditions: isothermal coupling and non-isothermal
coupling. On the basis of isothermal coupling, this study focuses on the phenomenon of
non-isothermal coupling. It is very good for the thermal comfort and energy-saving of
the subway to control and utilize the related parameters of piston wind and supplying air
jet properly. In addition, in the metro environmental control system, the coupling of
piston wind and air-conditioning jet when train is moving on the tunnel strongly affects
the airflow distribution of the platform, the station hall and the entire subway station,
and related to the passengers’ comfort and health. The mutual coupling between steady
jet(air-conditioning air) and intermittent unsteady force air flow (piston wind) is the
typical characteristics of the air distribution in metro thermal environment. Therefore, to
strengthen the research about the movement mechanism of the coupled wind has a wide
range of practical significance.
This paper focused on the research of velocity field and temperature field about the
non-isothermal coupling between piston wind and air-conditioning supplying air jet on
the non-platform screen door system, used theoretical modeling, model experiments and
field measurement methods synthetically. Through theoretical analysis to establish the
track of non-isothermal coupling jet about the piston wind and air-conditioning
supplying air and the mathematical model of the velocity field and temperature field,
and specific included tracks of coupling jet , angles between track and horizon, quality
average speed , quality average temperature, axial temperature and so on. Moreover, it
also got the dynamic variation of coupling jet about velocity field and temperature field
in the piston wind cycle, and validates the theoretical model according to the model
experimental results. According to the jet movement of piston wind in the station
platform wall and Using the air conditioning outlets of different position of Subway
platform, A (17.5,6), B (60,6) two points were as a research object, and also got the
dynamic variation of coupling jet about velocity field and temperature field in the piston
IV
wind cycle. At last, compared with the main characteristic parameters of the two jets
coupled in the isotherm and non-isotherm conditions, and the experimental results of the
liquid model verified the accuracy of the velocity field and temperature field about the
two jets in non-isotherm conditions.
In the model experiments, the Reynolds number and Archimedes number were as
the standard numbers of velocity field and temperature field separately, built a scale
1:16 model brine experiment station, and used the conductivity meter to indicate the
brine density indirectly. In the summer air-conditioning season, according to a filed
measurement for a platform of shanghai subway station, acquired the non-isotherm
coupling state parameters of air-conditioning supplying jet and piston wind in the
platform, such as track of coupling, velocity field and temperature field. At last,
comparing the measured parameters and experimental data proved the accuracy of the
model test.
The research object of this paper was the most typical airflow organization of the
subway station —— the mutual coupling of the supplying air jet and piston wind, and
built the mathematical model of temperature field and velocity field about the platform
air-conditioning supplying jet influenced by piston wind in the non-isotherm mutual
coupling conditions, filled part of the blank of the existing theories. Related mechanism
further improved the required theory of the energy-saving and comfort in the subway
environmental control system, the coupling study of the two jets in the non-isothermal
conditions set up a bridge between the theoretical research and practical application,
served the comfort and energy-saving of the Metro thermal environment, served
sustainable development of subway traffic and urban construction, and had an important
scientific significance.
Key Word: Platform piston wind, Air-conditioning supplying jet,
Non-isothermal coupling, Theoretical modeling of temperature field,
Salt-Bath scaled model
V
中文摘要
ABSTRACT
第一章 ........................................................................................................... 1
1.1 研究背景 ........................................................................................................ 1
1.2 国内外研究现状 ............................................................................................ 2
1.2.1 地铁活塞风研究现状 ........................................................................... 2
1.2.2 空调射流研究现状 ............................................................................... 3
1.3 论文主要研究内容及意义 ............................................................................ 5
第二章 站台活塞风与空调射流非等温耦合理论数学建模 ................................. 8
2.1 活塞风简介 .................................................................................................. 8
2.2 站台活塞风与空调送风射流等温耦合速度场理论模型 ............................ 8
2.3 站台活塞风与空调送风射流非等温耦合速度场理论模型 ...................... 13
2.3.1 站台活塞风作用下空调射流轨迹 ....................................................... 13
2.3.2 非等温耦合射流轨迹截面质量平均速度 ......................................... 15
2.4 站台活塞风与空调送风射流非等温耦合温度场理论模型 ....................... 17
2.4.1 非等温耦合射流轨迹截面质量平均温度 ........................................... 17
2.4.2 非等温耦合射流轨迹截面主体段轴心温度 ....................................... 19
2.5 本章小结 ...................................................................................................... 20
第三章 站台活塞风与空调射流非等温耦合特性理论求解与分析 ................... 21
3.1 理论求解站台活塞风与空调送风非等温耦合各参数特性 ...................... 21
3.1.1 站台活塞风动态变化及典型点选取 ................................................... 21
3.1.2 两股射流非等温耦合轨迹特性 ........................................................... 22
3.1.3 两股射流非等温耦合轨迹与水平方向夹角特性 ............................... 24
3.1.4 两股射流非等温耦合质量平均速度特性 ........................................... 25
3.1.5 两股射流非等温耦合射流主体段质量平均温度特性 ....................... 27
3.1.6 两股射流非等温耦合轴心温度特性 ................................................... 28
3.2 理论分析变工况下站台活塞风与空调送风非等温耦合射流特性 .......... 30
3.2.1 非等温耦合射流轨迹影响因素分析 ................................................... 30
3.2.2 非等温耦合射流特征温度参数影响因素分析 ................................... 32
3.3 理论对比站台活塞风与空调送风等温耦合与非等温耦合特征参数 ...... 37
3.3.1 两股射流等温与非等温耦合轨迹对比 ............................................... 37
3.3.2 两股射流等温与非等温耦合夹角对比 ............................................... 39
VI
3.3.3 两股射流等温与非等温耦合质量平均速度对比 ............................... 40
3.4 本章小结 ...................................................................................................... 40
第四章 液体缩尺模型实验与现场实测 ............................................................... 42
4.1 模型实验相似性原理及可行性分析 .......................................................... 42
4.1.1 液体缩尺模型实验相似性原理 ........................................................... 42
4.1.2 盐水缩尺实验可行性分析 ................................................................... 43
4.2 实验台搭建 .................................................................................................. 45
4.2.1 实验台原理及尺寸 ............................................................................... 45
4.2.2 实验台构成及数据采集 ....................................................................... 48
4.3 模型实验数据分析 ...................................................................................... 51
4.3.1 活塞风作用下空调射流竖直方向温度场 ........................................... 52
4.3.2 活塞风作用下空调射流水平方向温度场 ........................................... 54
4.4 现场实测验证模型试验结果 ...................................................................... 54
4.4.1 现场实测目的 ....................................................................................... 54
4.4.2 实测方案及仪器 ................................................................................... 55
4.4.3 实测数据对模型试验结果的验证 ....................................................... 56
4.5 本章小结 ...................................................................................................... 59
第五章 缩尺模型实验对理论建模的验证 ........................................................... 61
5.1 模型实验与理论建模耦合射流轨迹对比 .................................................. 61
5.1.1 非等温耦合射流轨迹模型试验结果 ................................................... 61
5.1.2 模型试验验证理论模型耦合轨迹 ....................................................... 63
5.2 模型实验与理论建模耦合射流轴心温度对比 .......................................... 65
5.2.1 非等温耦合射流轴心温度模型试验结果 ........................................... 65
5.2.2 模型试验验证理论模型轴心温度 ....................................................... 67
5.3 本章小结 ...................................................................................................... 68
第六章 结论与展望 ............................................................................................... 70
6.1 主要结论 ...................................................................................................... 70
6.2 不足与展望 .................................................................................................. 71
附表 ......................................................................................................................... 73
参考文献 ................................................................................................................. 76
在读期间公开发表的论文和承担科研项目及取得成果 ..................................... 79
致谢 ......................................................................................................................... 80
摘要:

I摘要在地铁站台非屏蔽门系统中,地铁列车在隧道内运行产生的活塞风对地铁站台气流组织影响显著。送风射流受站台间歇性活塞风作用的机理研究是从地铁环控区域气流组织实际状态中抽象出来的科学问题,其广泛存在于地铁站台层、站厅层、地铁走廊和地铁中转站等区域。送风射流与站台活塞风相互耦合的现象,根据送风射流中空调系统开启与否,可分为等温耦合和非等温耦合两种工况,本文在前人等温耦合的基础上,研究非等温耦合现象。恰当地控制和利用活塞风及送风射流的相关参数,关系到广大乘客的舒适性和身体健康,对地铁热环境的舒适性和节能性有很大作用。稳态送风射流(空调送风)与间歇性非稳态受迫气流(活塞风)相互耦合是地铁站台热环境气流...

展开>> 收起<<
地铁站台活塞风与空调送风非等温耦合特性研究.pdf

共84页,预览9页

还剩页未读, 继续阅读

作者:牛悦 分类:高等教育资料 价格:15积分 属性:84 页 大小:2.17MB 格式:PDF 时间:2024-11-11

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 84
客服
关注