企业现金流量分析的模型及算法研究

VIP免费
3.0 高德中 2024-11-19 5 4 1.47MB 76 页 15积分
侵权投诉
摘要
随着科学技术的发展,经济全球化的加剧,企业间既相互依存共同发展,其
之间的竞争也愈加激烈。2008 年美国次贷危机爆发之后,一些企业因为现金流量
状况极差,不能偿还到期的负债而导致破产,给企业的管理者、债权人、投资者
等利益相关者带来了巨大的损失。严酷的现实给予我们以深刻的启示,现金是企
业的血液,是企业得以生存的前提和基础。通过对企业现金流量进行财务状况分
析从而了解企业的经营中出现危机的可能性,十分必要而且非常紧迫。
纵观已有的企业现金流量的研究,主要集中在对现金流量信息的相关性和
靠性的论证上,真正研究现金流量的信息来预测财务出现状况的不多,而且普
地将现金流量作为辅助指标来改进传统财务预警模型,而且也缺乏对企业资本
场信息的参考。鉴于现金流量研究的现状,本文完全从现金流的视角出发,构
了分况的指标体系KMV 模型
务状况分析中来,并结合 BP 神经网络方法构建了 KMV-BP 混合模型,对选取的
100 上市证分业利分析企业
方面提供了一个全新的视角。
本文的研究结果主要表现在以下方面:
1. 本文量的通过获现力、
财务弹性、现金流量结构这五个方面构建了现金流量指标体系来分析企业的财
状况,并利用因子分析的方法,将选取的 13 个指标进行简化,指标更加简约,提
高了模型的训练速度,模型结构更加的合理。
2. 将 KMV 模型运用到企业现金流量分析中来,计算了 100 家上市企业的样
本数据的违约距离,得出结论:违约距离能够很好的区别 ST 企业和非 ST 企业,
即债务融资好的和差得企业,从而了解到那些 ST 企业目前现金流量不够充足,
无以偿还到期债务,之后出现财务状况的可能性极高。
3. 分析 BP 神经网络模型KMV 模型各自的优势和之后,本文重
寻找结合模型的,提出了 KMV-BP 的混合模型,对 100 个样本数据进
行了实分析,并与单一模型的分析结果进行对
通过混合模型的实证结果分析得出结论,混合模型能够提高对企业现金流
进行分析预测的的判断准确要优个模型的预测结果。因模型的结
可以更好弥补单一模型的缺,而且模型简单易操作可以在实中进行用。
后,据我国目前现金流量分析存在问题,提出了合理的建
键词:现金流量 KMV 模型 BP 神经网络 企业财务状况 KMV-
BP 模型
ABSTRACT
With the development of science and technology the globalization of the
economy enterprises not only develop together but also compete fiercely. In
2008subprime mortgage crisis exploded in the U.S. Because do not had sufficient
cash flow some companies were unable to repay maturing debt and lead to
bankruptcy. It is no doubt that all managerslendersinventors and other interest-
relating owners had suffered huge losses. Cash is the blood of the enterpriseand also
the premise and foundation of survival and developmentwhat is harsh reality tells
us. In order to know the possibility of occurring financial crisis in operating
activities forecasting financial situation by analyzing the cash flow is very
necessary and urgent.
Throughout all existing research about the cash flow distress of corporationsit
is mainly based on the relevance and reliability of the information of cash flow. There
is less research about financial distress forewarning based on cash flow.
Generallyresearchers use cash flow indicators as auxiliary indexes to improve the
traditional financial distress model. In another aspectit is also the lack of reference
information on the capital market. Based on the current situation this paper builds
the cash flow indicator system and explains the financial condition of enterprises in
terms of cash firstly. Then it introduces KMV modelwhich is used to analyze credit
riskinto the analysis of financial situation. Finallyusing the hybrid modelwhich
is mixing the KMV and the BP neural network model it studies the 100 listed
companies as samples. A fresh perspective will be provided in this paper.
The research results of this paper contain:
1. This paper analyzes the importance of cash flow. The cash flow indicator
system is built from five areas as cash-making ability debt-paying
ability earnings quality financial flexibility and cash flow structure. In order to
improve the training speed of the model and make the model structure more
reasonablefactor analysis method is used to simplify indexes.
2. Analyzed on the default distances of 100 listed companies companies it’s
turned out that the default distance of the ST is less than non-ST companies which is
in accordance with the actual situation. The default distance indicator has reflected to
some extent true of financial situation.
3. Based on the analysis of advantages and disadvantages for BP neural network
model and KMV modelwe focused on how to combine different model in order to
achieve higher classification accuracy. Using the mixing model this paper studies the
100 listed companies as samples and compared with the results of the separate
model.
Finallywe can derive the conclusion that: the hybird model can achieve higher
classification accuracy. Therefore the mixing model can compensate for the
shortcomings of a single model. What’s more it is easy to operate and applied in
practice.
In the end on the foundation we put forward some conclusions and
suggestions for the analysis of cash flow.
Key Words: cash flow KMV models BP neural network the
analysis of financial situationKMV-BP model
中文
ABSTRACT
章 绪 .........................................................1
§1.1 研究的背景与意义.............................................1
§1.2 内外献综述...............................................2
§1.2.1 献综述...........................................2
§1.2.2 献综述...........................................2
§1.3 研究的思路及研究内容.........................................4
§1.4 本文点...................................................5
第二章 相关的理论基础................................................6
§2.1 现金流的基础理论.............................................6
§2.1.1 现金现金流...........................................6
§2.1.2 运用现金流量进行企业财务状况的重要性...................6
§2.2 BP 神经网络的基本理论........................................8
§2.2.1 神经网络的方法概述.....................................8
§2.2.2 BP 神经网络的算法.................................10
§2.3 KMV 模型的基本理论..........................................12
§2.3.1 KMV 模型的起源........................................12
§2.3.2 KMV 模型的优缺点......................................12
§2.4 章小....................................................12
第三章 现金流指标体系的理论分析构建...............................14
§3.1 现金流指标体系的优点........................................14
§3.2 现金流指标体系的构建原则....................................15
§3.3 现金流指标体系的构建........................................16
§3.3.1 获现能力评价体系的构建................................16
§3.3.2 偿债能力评价体系的构建................................17
§3.3.3 收益质量评价体系的构建................................18
§3.3.4 财务弹性评价体系的构建................................19
§3.3.5 现金流量结构评价体系的构建............................20
§3.4 样本数据选取................................................21
§3.5 因子分析...................................................21
§3.5.1 因子分析的前提条件....................................21
I
§3.5.2 因子提取..............................................22
§3.5.3 因子转移矩阵..........................................23
§3.5.4 因子得分矩阵..........................................24
§3.6 章小...................................................24
第四章 基于 BP 神经网络模型的企业现金流实证分析......................26
§4.1 BP 神经网络算法.........................................26
§4.2 活函数的确定.............................................26
§4.3 程...................................................27
§4.4 BP 神经网络模型的构建.......................................30
§4.5 训练参数的设置.............................................30
§4.5 实证结果分析................................................31
§4.6 章小....................................................33
基于 KMV 模型的企业现金流量分析...............................34
§5.1 KMV 模型的引入..............................................34
§5.2 KMV 模型的基本理论..........................................34
§5.3 KMV 模型的..............................................35
§5.4 KMV 模型的基本假设条件......................................36
§5.5 KMV 模型的计算步骤..........................................37
§5.5.1 资产的市场价值 和资产价值波动率 .........37
§5.5.2 违约点 DPT 的计算......................................38
§5.5.3 违约距离 DD .....................................38
§5.5.4 预期违约率 EDF ..................................39
§5.6 KMV 模型参数的确定..........................................41
§5.6.1 股票市场价值波动率 .........................41
§5.6.2 股票市场价值 的计算................................41
§5.6.3 债务期和无风险利的计算........................42
§5.7 KMV 模型违约距离的计算结果..................................42
§5.8 结果分析....................................................45
§5.9 章小....................................................45
第六章 基于 KMV-BP 混合模型的企业现金流分析..........................46
§6.1 基于 KMV-BP 的混合模型.......................................46
§6.2 模型预测结果对分析........................................48
§6.3 ST 企业ST 企业的对分析................................48
II
摘要:

企业现金流量分析的模型及算法研究摘要随着科学技术的发展,经济全球化的加剧,企业间既相互依存共同发展,其之间的竞争也愈加激烈。2008年美国次贷危机爆发之后,一些企业因为现金流量状况极差,不能偿还到期的负债而导致破产,给企业的管理者、债权人、投资者等利益相关者带来了巨大的损失。严酷的现实给予我们以深刻的启示,现金是企业的血液,是企业得以生存的前提和基础。通过对企业现金流量进行财务状况分析从而了解企业的经营中出现危机的可能性,十分必要而且非常紧迫。纵观已有的企业现金流量的研究,主要集中在对现金流量信息的相关性和可靠性的论证上,真正研究现金流量的信息来预测财务出现状况的不多,而且普遍地将现金流量作为...

展开>> 收起<<
企业现金流量分析的模型及算法研究.doc

共76页,预览8页

还剩页未读, 继续阅读

作者:高德中 分类:高等教育资料 价格:15积分 属性:76 页 大小:1.47MB 格式:DOC 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 76
客服
关注