快速设计技术及其在除氧器
VIP免费
摘 要
随着全社会用电需求不断提高,作为发电厂重要设备的除氧器市场需求也越
来越大,因此导致企业对除氧器项目越来越重视。为了缩短开发周期,运用快速
设计技术开发一个除氧器参数化设计系统非常有必要。
本系统采用 VB6.0 语言结合 SolidWorks API 函数编写相关程序,实现了与
SolidWorks 软件的无缝集成以及对除氧器模型与 SQL 数据库的双向驱动,并结合
智能 CAD 技术,开发出了一种适合企业实际设计需要,符合设计人员开发习惯的
除氧器参数化设计系统。本系统采用从上到下的设计方法,通过与设计库中的项
目比照,选出相似的实例进行复制,然后在此基础上进行修改设计。设计完成后,
将此项目作为新的实例存入系统设计库中,从而实现整个系统的不断完善。本系
统完成了除氧器装置从参数计算到结构设计、工艺设计、以及最终生成并完善所
有零部件图纸的过程。
本文详细阐述了除氧器各个零部件的参数化设计思路与方法,最终实现一键
出图以及计算报告书与零部件清单的自动生成。
关键词: 快速设计 SolidWorks API 参数化设计 除氧器
ABSTRACT
With the economic development of the society, deaerator who as the major power
plant equipment also has a growing market demand. That made company pay more and
more attention to the deaerator projects. In order to reduce the development cycle, it is
necessary to design a deaerator parametric system with rapid design technology.
This system uses VB6.0 language union SolidWorks API functions to write
programs, realize the seamless integration with SolidWorks and make the model drive
with SQL Server. According to connect with Intelligent CAD theory, develop a kind of
software which is suitable for enterprise development needs and accord with actual
design personnel to develop habits.The system uses a top-down design method, using a
case-based reasoning. First of all the system builds an evidence base, then when the new
project coming, compares with similar case, and makes changes based on the design.
After the completion of the design, this project as a new case will be stored into the base,
thus completing the entire system and make improvements. This system completed the
process of deaerator from parameter calculation to the structure design, process design
and create all CAD drawings.
This paper describes various components deaerator parametric design ideas and
methods, finally realize the function of a key to achieve all drawings and the automatic
generation of calculation reports and lists.
Key Words: Rapid Design, SolidWorks,API,Parameterization Design,Case-based
Reasoning , Deaerator
目 录
中文摘要
ABSTRACT
第一章 绪论 ·················································································· 1
§1.1 课题来源与研究目标 ···························································1
§1.2 国内外研究现状 ·································································2
§1.2.1 快速设计系统的发展现状 ············································ 2
§1.2.2 国内外参数化技术的发展与现状 ··································3
§1.3 本文研究内容 ····································································4
§1.4 论文架构 ·········································································· 5
第二章 快速设计技术 ······································································ 7
§2.1 快速设计的发展趋势 ···························································7
§2.2 快速设计的概念 ·································································7
§2.3 企业对快速设计的需求 ························································8
§2.4 快速设计的关键技术 ···························································9
§2.5 本章小结 ········································································ 10
第三章 除氧器设计理论基础 ····························································11
§3.1 除氧器概述 ····································································· 11
§3.1.1 除氧器发展历程 ······················································· 11
§3.1.2 除氧原理 ································································ 12
§3.1.3 除氧方法 ································································ 13
§3.1.4 热力除氧理论 ·························································· 14
§3.1.5 除氧器分类 ····························································· 17
§3.2 除氧器设计 ····································································· 18
§3.2.1 除氧器筒身设计 ······················································· 18
§3.2.2 除氧器封头设计 ······················································· 19
§3.2.3 除氧器支座设计 ······················································· 21
§3.2.4 除氧器整体设计 ······················································· 22
§3.3 本章小结 ········································································ 22
第四章 除氧器参数化设计系统的开发技术 ········································· 23
§4.1 参数化设计技术 ······························································· 23
§4.2 SolidWorks 及其二次开发技术 ············································· 26
§4.2.1 SolidWorks 介绍 ························································26
§4.2.2 SolidWorks 二次开发 ················································· 27
§4.3 数据库开发技术 ······························································· 28
§4.4 智能 CAD 技术 ································································ 32
§4.4.1 面向方案形成过程的 ICAD 方法 ································ 32
§4.4.2 基于设计对象表达的 ICAD 方法 ································ 33
§4.5 智能 CAD 技术在除氧器中的应用 ········································ 35
§4.6 本章小结 ········································································ 37
第五章 除氧器参数化设计系统 ························································ 38
§5.1 除氧器参数化设计系统的结构 ··············································38
§5.2 接管的参数化 ··································································· 40
§5.2.1 接管类零部件的数据库搭建技术 ································ 40
§5.2.2 普通接管的参数化设计流程 ······································ 41
§5.2.3 高加接管的设计流程 ··············································· 43
§5.3 进水装置的参数化 ····························································· 46
§5.4 主加热装置的参数化 ·························································· 47
§5.5 辅加热装置的参数化 ·························································· 50
§5.6 支座的参数化 ··································································· 51
§5.7 本章小结 ········································································· 52
第六章 工程图智能生成与系统的实现 ··············································· 53
§6.1 工程图智能生成技术 ························································· 53
6.1.1 除氧器零部件自动排序 ················································ 54
6.1.2 尺寸标注自动调整 ····················································· 55
6.1.3 明细表的生成与调整 ·················································· 55
§6.2 完善工程图 ····································································· 56
§6.3 一键出图功能的实现 ························································· 57
§6.4 除氧器系统的实现 ···························································· 58
§6.4.1 计算报告书自动生成 ·················································58
§6.4.2 零部件清单自动生成 ·················································60
§6.5 本章小结 ········································································ 62
第七章 总结与展望 ········································································63
§7.1 总结 ··············································································· 63
§7.2 进一步工作与展望 ····························································· 63
第一章 绪论
1
第一章 绪论
§1.1 课题来源与研究目标
发电设备伴随着全球用电量增加在不断更新换代,除氧器为火电厂重要的设
备,随着除氧器需求量的增加,除氧器设计方法也需要不断的改进。虽然在计算
机绘图的帮助下,设计效率已经有大大的提高,但是还不能满足市场竞争的需要,
企业需要一种开发周期短、设计错误率低、设计出的产品质量优等特点的设计方
法。然而,除氧器是一种复杂的机械产品,包括主加热装置、辅加热装置、进水装
置、支座、人孔、接管等零部件。形式多样,设计计算也比较复杂。传统的手工
设计方法设计周期长,工作量很繁杂,不仅需要查阅很多的相关设计资料,而且
需要经验丰富的工程师才能胜任。为了适应现代快速的市场发展速度,企业必须
具备在无法预测的竞争环境中可以生存、发展并扩大其竞争优势的能力,因此采
用快速设计技术显得尤为重要。
在现实需求层面上,随着科学技术的发展和日益增长的社会需求,除氧器的类型、规格也在不
断变化,如何适应快速多变的市场需求,如何不断推出新产品,如何以高质量、低错误率、快周期
生产出满足企业要求的除氧器,是提高企业效益、提高市场竞争力所急须解决的关键问题,是涉及
企业能否在市场竞争中取得优势的根本问题。
本课题来源于上海电气集团电站辅机厂的产品―火电厂除氧器的研究与开
发。通过运用 VB 语言结合 SolidWorks 的二次开发接口 API 函数,在 SolidWorks
内部得到模型的特征数据,并将数据存入知识工程系统数据库,在知识系统的支
持下,根据产品的变量,推理出相应的优化设计方案。本系统实现 SolidWorks 三
维模型的参数化设计智能化,并提高了设计资源的利用率,同时也加快了除氧器
参数化的设计速度,实现一键出图与零部件清单及计算报告书的自动生成,以满
足企业和客户的需求。
快速设计及其在除氧器参数化设计系统中研究与应用
2
§1.2 国内外研究现状
§1.2.1 快速设计系统的发展现状
随着信息化、科技化已成为二十一世纪的主流,快速设计将成为推动现代制造企业前进的主要
生产方式之一。信息技术推动着制造业的发展主要体现在各种计算机辅助设计技术的应用,以及工
业发达国家利用远程信息网络技术将位于不同地方、具有不同职能的公司连接起来,进行跨部门甚
至跨公司的技术合作交流。我国应该结合当前制造工业的实情借鉴国际上的先进经验,提出适合我
国国情的生产模式,寻求 21 世纪中国制造工业的发展道路,而不是简单地盲目地跟随国外的发展
脚步。
一些企业在实际的产品开发过程中,运用了快速设计与制造技术,取得了显著的效果。比如美
国的克莱斯勒公司在开发新车 Neno 的过程中,因为应用了快速设计技术,光技术人员参与的人数
比传统的开发方式就减少了 60%多,开发周期也缩短为原来的 80%。拿 Neno 的发动机来说,其
设计过程中图纸的修改量就减少了四分之三[1-2]。
在现实应用层次上,国际上一些大型公司已开发出了能实现简单产品的快速定制设计的系统,
比如美国 Dell 计算机公司会根据用户喜好来配置 PC 和Server 服务器。Andersen 门窗制造公司开
发了配置器使得用户能设计并订购自己所需的门户。国内的海尔集团推出了基于订单的个性化定制
系统。
加拿大 Calgary 大学研究的 MeteMorph[3-7]将智能制造系统以中介器(Mediator)为中心构造成联
邦式的多智能体系统结构。其中 Agent 用于表示制造设备、产品或加工的工件,Agent 通过与
Mediator 的连接加入整个制造环境,Mediator 则用于 Agent 之间的交互和协调。
ABCDE[8-9](Agent-Based Concurrent Design Environment)是该项目组开发的并行设计集成环境,包括
多智能体管理器、特征 Agent、零件 Agent 及CAD 实体等要素。为了实现快速、高效的产品设计
过程,ABCDE 中的 Agent 通过设计中介器(Design Mediator)集成到 MeteMorph 系统中,在产品设
计过程中通过与制造系统的 Agent 的交互实时地获得产品可制造性评价等信息。
为实现快速设计制造理念而进行的快速设计技术,国内的专家学者也对这方面也进行了广泛的
研究和探讨:
钟廷修他们认为快速响应工程(Rapid Response Engineering)[10]的主要内容包括快速捕捉市场需
求信息、快速产品设计、快速产品试制定型和快速响应制造系统等四个方面。巩琦、段鹏等研究了
矿山工程敏捷设计系统[11],提出矿山工程敏捷设计系统的概念。
燕山大学的陈继刚等给出了敏捷设计的理论体系[12],建立异地敏捷化开发模
式;设计了轿车轮毅异地敏捷化产品开发系统;该系统基于 B/S 结构,将 ASP 动态
摘要:
展开>>
收起<<
摘要随着全社会用电需求不断提高,作为发电厂重要设备的除氧器市场需求也越来越大,因此导致企业对除氧器项目越来越重视。为了缩短开发周期,运用快速设计技术开发一个除氧器参数化设计系统非常有必要。本系统采用VB6.0语言结合SolidWorksAPI函数编写相关程序,实现了与SolidWorks软件的无缝集成以及对除氧器模型与SQL数据库的双向驱动,并结合智能CAD技术,开发出了一种适合企业实际设计需要,符合设计人员开发习惯的除氧器参数化设计系统。本系统采用从上到下的设计方法,通过与设计库中的项目比照,选出相似的实例进行复制,然后在此基础上进行修改设计。设计完成后,将此项目作为新的实例存入系统设计库中...
相关推荐
-
VIP免费2025-01-09 4
-
VIP免费2025-01-09 4
-
VIP免费2025-01-09 4
-
VIP免费2025-01-09 4
-
VIP免费2025-01-09 4
-
VIP免费2025-01-09 5
-
VIP免费2025-01-09 4
-
VIP免费2025-01-09 4
-
VIP免费2025-01-09 4
-
VIP免费2025-01-09 4
作者:牛悦
分类:高等教育资料
价格:15积分
属性:70 页
大小:2.3MB
格式:PDF
时间:2024-11-19