颗粒碰撞阻尼器减振机理实验研究

VIP免费
3.0 牛悦 2024-11-19 4 4 2.83MB 71 页 15积分
侵权投诉
摘 要
碰撞阻尼属于振动控制中的被动控制技术,它利用振动过程中冲击器与主
系统的碰撞来控制主系统的响应。关于碰撞阻尼的研究最近得到了迅猛的发展,
在航天、航空、军工、汽车等领域和建筑、桥梁、铁路等结构工程的振动控制
中得到了广泛地应用,并取得了良好的减振效果。目前,有代表性地碰撞阻尼
包括:单体碰撞阻尼、多体碰撞阻尼、豆包碰撞阻尼、颗粒阻尼、非阻塞性颗
粒碰撞阻尼和带颗粒减振剂的碰撞阻尼等等。
碰撞阻尼大都以动量交换和摩擦作为耗能机理,将系统的能量暂时转移或永
久地消耗。在阻尼器腔体中加入钢球冲击器和颗粒减振材料,组成实验中需要
的颗粒碰撞阻尼器。它的减振机理是利用振动过程中钢球强烈地冲击碰撞作用
使腔体中的颗粒材料产生强烈地挤压变形,发生塑性变形,永久地消耗系统的
能量。同时,颗粒材料之间以及颗粒材料和阻尼器之间也存在摩擦作用,使系
统能量发生不可逆耗散。
本文以颗粒碰撞阻尼为主要对象进行实验研究,通过加入阻尼器中冲击器
(钢球)直径变化及颗粒材料、填充率变化,对阻尼器的减振效果进行研究,
比较了不同直径冲击器和不同颗粒材料、填充率组合的情况下系统的减振效果,
得出了实验结论,对工程中的实际应用具有一定的指导作用。同时,本文也进
行了颗粒阻尼和钢球碰撞阻尼的振动实验研,对于影响振幅的重要因素进行
了分析,并与颗粒碰撞阻尼的减振效果进行了比较。实验结果表明,颗粒阻尼
器的减振作用与钢球碰撞阻尼相比减振效果相差较远,而带颗粒减振剂的钢球
碰撞阻尼在颗粒材料和填充率选择较好的情况下,在钢球碰撞阻尼的基础上可
以进一步抑制系统振幅,但并不是所有的颗粒材料与钢球在任何情况下都可以
降低系统的振幅,会因为颗粒材料的不同会出现不同的实验结果和结论。通过
颗粒碰撞阻尼的时效性分析,研究了颗粒碰撞阻尼器的减振效果与时间变化的
规律,验证了颗粒碰撞阻尼器的可靠性。
关键词:碰撞阻 颗粒减振 颗粒碰撞阻 减振降噪机理 振动与
噪声控制
ABSTRSCT
In vibration control field, collision damping belongs to passive control
technique, this technique controls the primary system response in vibration process
through the impact between the impacter and the primary system. The recent research
on impact damping has developed rapidly, in the fields of aerospace, aviation, war
industry, automobile etc, and bridges, railways and other structural engineering the
vibration control had been widely used, and obtained good effect of vibration
reduction. At present, the representative collision damping include: monomer impact
damping, multi-body impact damping, DouBao impact damping, particles damping,
the obstructive particles impact damping and impact damping with particle damping
agent, etc.
The energy dissipation mechanism of the impact damping includes two main
aspects: momentum exchange and friction, these elements can temporarily transfer
the energy off the system or consume the energy permanently. In the experiment,
impact damper consisted of steel balls impacters and particle damping agent. The
vibration reduction mechanism of the experiment is as follows: in the damper cavity
the steel balls strongly impacted the particle materials, strongly squeezed the particle
materials made them produced plastic deformation, in the vibration process
permanently consumed the energy of the system. At the same time, between the
particle materials and the particle materials and the damper and the steel balls existed
the friction that made the system energy dissipated irreversible.
In this paper, particle collision damping is object of the experimental research,
by adding variational diameter impacters(steel balls) and particle materials in the
damper, studied the vibration reduction of the damper, compared the system
reduction effect of different diameter impacters and different kinds of particle
materials in combination ways. It is concluded the relevant conclusions that can help
guide practical application in engineering in some extent. At the same time, in this
paper the particle damping vibration experiment and steel balls impact damping
vibration experiment were also done, the important factors can influence the
amplitude are analyzed and compared experimental results with the particle impact
damping. The experimental results show that the vibration reduction effect of the
particle damping is worse than that of steel balls impact damping. If the particle
materials and filling rate were chosen appropriate in experiment of steel balls impact
damping with particle damping agent, it can suppress the vibration further on the
base of experiment of steel balls collision damping, but not all the combination ways
of particle materials and steel balls can reduce the system amplitude, it will come to a
conclusion differently for different particle materials. Through the particle impact
damping experiment of time-effectiveness, the paper studied the rules of the
vibration reduction effect as the time changed and verified the reliability of particle
impact damper.
Keywords: impact damping, particle damping agent, particle impact
damping, vibration reduction and noise control
mechanism, vibration and noise control
目 录
中文摘要
ABSTRACT
第一章 绪 论 ........................................................ 1
§1.1 引言 ......................................................... 1
§1.2 阻尼减振技术 ................................................. 1
§1.3 碰撞阻尼、颗粒阻尼技术的国内外发展概况 ....................... 2
§1.4 颗粒碰撞阻尼及其减振机理的提出 ............................... 3
§1.5 论文的主要研究内容 ........................................... 4
第二章 颗粒阻尼减振实验 ............................................. 5
§2.1 颗粒阻尼简介 ................................................. 5
§2.2 实验设备及装置 ............................................... 5
§2.2.1 设备及装置名称 .......................................... 5
§2.2.2 设备布置简图 ............................................ 5
§2.2.3 设备工作流程 ............................................ 6
§2.3 悬臂梁系统 ................................................... 7
§2.3.1 相关参数 ................................................ 7
§2.3.2 固有频率计算 ............................................ 7
§2.4 悬臂梁系统无外加阻尼振动 ..................................... 7
§2.5 颗粒阻尼减振实验 ............................................. 7
§2.5.1 实验材料 ................................................ 7
§2.5.2 实验方法 ................................................ 8
§2.6 实验数据及分析 ............................................... 8
§2.6.1 铜粉颗粒减振实验 ........................................ 8
§2.6.2 锌粉颗粒减振实验 ....................................... 10
§2.6.3 铝粉颗粒减振实验 ....................................... 12
§2.6.4 石英砂颗粒减振实验 ..................................... 13
§2.6.5 石墨颗粒减振实验 ....................................... 15
§2.7 耗能机理分析 ................................................ 16
§2.8 本章小结 .................................................... 17
第三章 钢球碰撞阻尼实验 ............................................ 19
§3.1 碰撞(冲击)阻尼 ............................................ 19
§3.2 碰撞阻尼器的力学模型 ........................................ 20
§3.3 冲击器(钢球)碰撞阻尼实验 .................................. 20
§3.4 减振机理分析 ................................................ 21
§3.5 本章小结 .................................................... 22
第四章 颗粒碰撞阻尼减振实验 ........................................ 24
§4.1 颗粒碰撞阻尼 ................................................ 24
§4.2 冲击器(钢球)和颗粒减振剂阻尼振动实验介绍 .................. 24
§4.3 钢球、铜粉阻尼减振 .......................................... 25
§4.3.1 阻尼器中加入钢球和体积填充率为 20%的铜粉 ................ 25
§4.3.2 阻尼器中加入钢球和体积填充率为 40%的铜粉 ................ 25
§4.3.3 阻尼器中加入钢球和体积填充率为 60%的铜粉 ................ 28
§4.3.4 实验结果及减振机理分析 ................................. 30
§4.3.5 小结 ................................................... 31
§4.4 钢球、锌粉阻尼减振 .......................................... 32
§4.4.1 阻尼器中加入钢球和体积填充率为 20%的锌粉 ................ 32
§4.4.2 阻尼器中加入钢球和体积填充率为 40%的锌粉 ................ 33
§4.4.3 阻尼器中加入钢球和体积填充率为 60%的锌粉 ................ 35
§4.4.4 实验结果及减振机理分析 ................................. 36
§4.4.5 小结 ................................................... 38
§4.5 钢球、铝粉阻尼减振 .......................................... 39
§4.5.1 阻尼器中加入钢球和体积填充率为 20%的铝粉 ................ 39
§4.5.2 阻尼器中加入钢球和体积填充率为 40%的铝粉 ................ 40
§4.5.3 阻尼器中加入钢球和体积填充率为 60%的铝粉 ................ 41
§4.5.4 实验结果及减振机理分析 ................................. 43
§4.5.5 小结 ................................................... 44
§4.6 钢球、石英砂阻尼减振 ........................................ 45
§4.6.1 阻尼器中加入钢球和体积填充率为 20%的石英砂 .............. 45
§4.6.2 阻尼器中加入钢球和体积填充率为 40%的石英砂 .............. 46
§4.6.3 阻尼器中加入钢球和体积填充率为 60%的石英砂 .............. 47
§4.6.4 实验结果及减振机理分析 ................................. 49
§4.6.5 小结 ................................................... 50
§4.7 钢球、石墨阻尼减振 .......................................... 51
§4.7.1 阻尼器中加入钢球和体积填充率为 20%的石墨 ................ 51
§4.7.2 阻尼器中加入钢球和体积填充率为 40%的石墨 ................ 52
§4.7.3 阻尼器中加入钢球和体积填充率为 60%的石墨 ................ 54
§4.7.4 实验结果及减振机理分析 ................................. 55
§4.7.5 小结 ................................................... 56
§4.8 本章小结 .................................................... 56
第五章 颗粒碰撞阻尼时效性实验 ...................................... 57
§5.1 时效性实验 .................................................. 57
§5.2 颗粒碰撞阻尼时效性实验 ...................................... 57
§5.3 实验分析 .................................................... 57
§5.4 小结 ........................................................ 59
§5.5 300 小时后振幅预测 .......................................... 59
§5.6 本章小结 .................................................... 59
第六章 全文总结与展望 .............................................. 60
§6.1 结论 ........................................................ 60
§6.2 展望 ........................................................ 62
参考文献 ........................................................... 63
在读期间公开发表的论文和承担科研项目及取得成果 ..................... 66
致 谢 .............................................................. 67
第一章 绪论
1
第一章 绪 论
§1.1 引言
工程结构其中主要指机械结构在受到激励以后会产生振动与噪声,这是一种
普遍的物理现象。这种现象有时可以用来为人类服务。例如,古庙钟声就是古钟
受敲击后振动辐射出受人欢迎的悦耳声。机械加工中的振动切削;上下料机构使
用的振动料斗;分选砂粒使用的振动筛;使用超声技术进行检测、清洗等等,就
是这类有用的实例。但是多数情况下,振动、冲击、噪声,会对生产及生活产生
严重危害,必须采取各种有效措施,加以严格控制。
我国是一个多地震的国家,地震灾害是十分可怕地,有名的唐山地震造成了
四十万人伤亡,整个城市的建筑物几乎全部倒塌。专家们认为:地震造成人畜伤
亡的主要原因是建筑物的倾倒,房屋及其他建筑物如在设计时采用抗震结构,将
大幅度降低地震造成的危害。对于贮存有毒物质的大型容器;具有放射性物质的
生产工厂;结构强度更为严格的高层建筑等,更应该在建设的同时,采取有效的
抗震安全措施,对地震产生的破坏加以控制。地震波是一种具有宽频特性的随机
波,它使建筑物受激励后产生振动相应并发生破坏,破坏的原因属于共振破坏。
另一种破坏,叫冲击损坏。冲击破坏造成的损失是惊人的。例如我国每年工
业产品在运输过程中因冲击损坏造成的损失往往超过一百亿元。因此,产品包装
具有良好的抗冲击性能就有十分重要的意义。同时防止或减轻冲击损坏造成的危
害在工业生产领域内存在众多的实际问题。例如汽车或其它运输工具应改善抗冲
击性能,使在事故发生时减轻灾害及人员伤亡;又如高速转动的砂轮一旦损坏飞
散,其防护罩应对工作人员作有效地防护。所以,冲击的防止和控制也是十分重
要的。
振动还使结构件产生动应力而造成疲劳损坏。拖车的牵引钩,喷气发动机的
喷气导管,其损坏的原因主要是振动疲劳或声疲劳。各类交通工具在高级路面上
行驶或在高低不平的路面上行驶,其大修周期可以相差三到五倍,以至十倍。就
这一点造成的损失也是惊人的。
所以,振动是造成工程结构损坏及寿命降低的重要原因之一,必须加以控制。
颗粒碰撞阻尼器减振机理实验研究
2
§1.2 阻尼减振技术
系统耗损能量的能力,定义为阻尼。阻尼越大,输入的能量可以在较短的时
间内耗损完毕,结构从受激励振动到重又静止的过程越短。所以,阻尼是使结构
受激励后迅速恢复到静止状态的一项因素。
阻尼减振降噪技术,可以提高各类机械产品及工程结构的抗振性和稳定性,
延长其工作寿命,也可以使某些大型结构如土木建筑结构在发生地震灾害时得到
抗震保护。这项技术还能有效地降低噪声,防止噪声对环境的污染。由于机械产
品的振动和噪声水平已成为现代产品内在质量的重要标志之一,所以,阻尼技术
在提高产品的质量方面也有重要作用。总之,阻尼技术的推广应用不仅有显著的
社会效益,而且有重大的经济价值。
阻尼技术的应用范围十分广阔,几乎涉及到国民经济的各主要工业领域,如
航天航空工业;机械动力工业;交通运输工业;电力电子工业;轻工纺织工业;
仪器仪表工业;军事国防工业;家用电器工业以至运动器材工业等等。和阻尼技
术同步发展的阻尼器材工业还是一项具有广阔前途的新型材料工业。事实证明:
阻尼技术的工程应用已经受到各行各业的广泛重视。
阻尼技术是以阻尼耗能机理为理论基础的,从应用技术的角度上看,阻尼耗
能机理就是对振动能量转换成可以耗损的能量这一物理现象做出合理的解释,并
探求其中的规律,以便正确运用这一规律于减振降噪,使之成为一项适用的技术。
提高阻尼减振降噪技术的效果,是这项技术需要解决的最主要问题。探求其
中规律的一般分析方法是在合理的假设条件下建立起某种数学模型,用以描述阻
尼和各相关因素之间的联系。然后以某种和工程应用有密切联系的指标来确定目
标,进行参数优化或结构优化,以求最大的减振降噪效果。
工程实际问题是十分复杂的,有时建立的物理数学模型会和实际问题之间存
在差距,或者不能对问题的复杂性作出规律性地描述和分析。因此,运用实验方
法探求最优阻尼效果的规律仍然是最常用的方法。
§1.3 碰撞阻尼、颗粒阻尼技术的国内外发展概
碰撞阻尼属于振动的被动控制技术,它利用振动过程中自由质量(冲击器)
与主系统的碰撞来控制主系统的响应。由于碰撞阻尼器构造简单、成本低廉、易
于实施、无需外电源、适合在恶劣环境下使用并且减振效果良好,因而,关于碰
撞阻尼的研究在最近得到了迅猛的发展并在机床、透平机械、机器人、汽车、飞
机、航天飞船和高层建筑等领域的振动控制中得到了广泛的应用[1-7]目前,有代
摘要:

摘要碰撞阻尼属于振动控制中的被动控制技术,它利用振动过程中冲击器与主系统的碰撞来控制主系统的响应。关于碰撞阻尼的研究最近得到了迅猛的发展,在航天、航空、军工、汽车等领域和建筑、桥梁、铁路等结构工程的振动控制中得到了广泛地应用,并取得了良好的减振效果。目前,有代表性地碰撞阻尼包括:单体碰撞阻尼、多体碰撞阻尼、豆包碰撞阻尼、颗粒阻尼、非阻塞性颗粒碰撞阻尼和带颗粒减振剂的碰撞阻尼等等。碰撞阻尼大都以动量交换和摩擦作为耗能机理,将系统的能量暂时转移或永久地消耗。在阻尼器腔体中加入钢球冲击器和颗粒减振材料,组成实验中需要的颗粒碰撞阻尼器。它的减振机理是利用振动过程中钢球强烈地冲击碰撞作用使腔体中的颗粒材...

展开>> 收起<<
颗粒碰撞阻尼器减振机理实验研究.pdf

共71页,预览8页

还剩页未读, 继续阅读

作者:牛悦 分类:高等教育资料 价格:15积分 属性:71 页 大小:2.83MB 格式:PDF 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 71
客服
关注