几类椭圆型方程组解的存在性

VIP免费
3.0 牛悦 2024-11-19 4 4 457.8KB 36 页 15积分
侵权投诉
摘 要
本文主要研究了几类非线性椭圆型方程组解的存在性问题,运用的工具主要
有不动点定理,直接变分法,山路引理,Pohozaev等式等.
作者首先利用不动点定理证明了拟线性椭圆型方程组径向正解的存在性问题
和三个径向正解的存在性问题. 其次利用 Pohozaev 等式研究了拟线性椭圆型方程
组临界和超临界指标情况下解的不存在性问题;接着利用 Lagrange 乘子定理证明
了拟线性椭圆型方程组次临界情况下解的存在性;然后利用山路引理证明了次临
界和临界情况下解的存在性问题. 最后利用 Lagrange
(p,q)-Laplace 非线性椭圆型方程组极小能量解的存在性问题.
本文主要分为四章:在第一章,主要介绍了本文的一些主要历史背景和本文
的一些主要结果.
在第二章,作者通过锥上不动点定理研究了非线性椭圆方程组正径向解的存
在性及三个正径向解的存在性问题. 本章主要是把微分方程转化为积分方程,这
样就可以把求微分方程的弱解问题转化为求积分方程的不动点问题,从而利用锥
上不动点定理解决了原问题.
在第三章,作者通过 Pohozaev 等式,证明了一类非线性椭圆型方程组临界和
超临界情况下解的不存在性问题.然后又利用 Lagrange 乘子定理证明了这个方程
组次临界情况下解的存在性,接着利用山路引理证明了这个方程组次临界情况下
解的存在性以及临界情况下解的存在性.
在第四章,主要利用直接变分原理,通过 Nehari 流形的方法证明了
(p,q)-Laplace 方程组的耦合项相互分离时极小能量解的存在性问题.
关键词:正径向解 全连续算子 Pohozaev 等式 Lagrange 乘子 山路引
Nehari 流形 极小能量解
ABSTRACT
In this thesis, we studied the existence of solutions for some kinds of elliptic
systems. We also studied the nonexistence of solutions for a kind of nonlinear elliptic
systems with overcritical and subcritical states. Some important tools are applied in this
paper, which are fixed point theorem, variational method, Mountain pass Lemma, and
Pohozaev identity.
In this paper, we study the existence of radially positive solutions for a kind of
nonlinear elliptic systems with nonhomogeneous conditions and the existence of three
radially positive solutions for this kind of nonlinear elliptic systems. Secondly, we
mainly use Pohozaev identity to prove nonexistence of solutions for a kind of nonlinear
elliptic systems with overcritical and subcritical states. Via Lagrange multiplier theorem,
we studied existence of solution for this systems with subcritical states. Using Mountain
pass Lemma, we studied the existence of solution for this systems with critical and
subcritical states. Finally, we studied the existence of nontrivially least energy solutions
for a class of nonlinear (p, q)-Laplace elliptic systems.
This paper consists of four parts. In chapter one, we talked about the main
backgrounds and results of the paper.
In chapter two, using fixed point theorem, we study the existence of radially
positive solutions for a kind of nonlinear elliptic systems with nonhomogeneous
conditions and the existence of three radially positive solutions for this kind of
nonlinear elliptic systems. Transferring the differential equations to the integral
equations, we can obtain that the fixed points of the integral equations are equal to the
solutions of the nonlinear elliptic systems. Using the fixed point theorem, we can obtain
the fixed points of the integral equations, which are the solutions of the differential
equations.
In chapter three, firstly, we use the Pohozaev identity to prove nonexistence of
solutions for a kind of nonlinear elliptic systems with overcritical and subcritical states.
Secondly, via Lagrange multiplier theorem, we studied the existence of solutions for the
kind of nonlinear elliptic systems with subcritical states. Finally, using Mountain pass
lemma, we studied the existence of solutions for this systems with critical and
subcritical states.
In chapter four, using directly variational method, we prove the existence of
nontrivially least energy solution for a class of nonlinear (p, q)-Laplace elliptic systems
with the coupling term separated.
Key Words: Radial solution, Completely continuous operator, Lagr-
ange multiplier, Pohozaev identity, Mountain pass lemma, Nehari me-
thod, Least energy solution
目 录
中文摘要
ABSTRACT
第一章 绪 论............................................................................................................1
§1.1 有关历史背景............................................................................................1
§1.2 本文工作....................................................................................................3
第二章 非线性椭圆方程组的三个正径向解的存在性..........................................6
§2.1 引 言..........................................................................................................6
§2.2 预备知识....................................................................................................7
§2.3 主要结果的证明.........................................................................................9
第三章 非线性椭圆方程组的三个正径向解的存在性........................................15
§3.1 引 言........................................................................................................15
§3.2 解的不存在性..........................................................................................16
§3.3 次临界情况下解的存在性.......................................................................17
第四章 非线性椭圆方程组的三个正径向解的存在性........................................21
§2.1 引 言........................................................................................................21
§2.2 预备知识..................................................................................................22
§2.3 主要结果的证明.......................................................................................26
参考文献..................................................................................................................29
在读期间公开发表的论文和承担科研项目及取得成果......................................33
致 谢........................................................................................................................34
摘要:

摘要本文主要研究了几类非线性椭圆型方程组解的存在性问题,运用的工具主要有不动点定理,直接变分法,山路引理,Pohozaev等式等.作者首先利用不动点定理证明了拟线性椭圆型方程组径向正解的存在性问题和三个径向正解的存在性问题.其次利用Pohozaev等式研究了拟线性椭圆型方程组临界和超临界指标情况下解的不存在性问题;接着利用Lagrange乘子定理证明了拟线性椭圆型方程组次临界情况下解的存在性;然后利用山路引理证明了次临界和临界情况下解的存在性问题.最后利用Lagrange乘子定理证明了一类(p,q)-Laplace非线性椭圆型方程组极小能量解的存在性问题.本文主要分为四章:在第一章,主要介绍了...

展开>> 收起<<
几类椭圆型方程组解的存在性.pdf

共36页,预览4页

还剩页未读, 继续阅读

作者:牛悦 分类:高等教育资料 价格:15积分 属性:36 页 大小:457.8KB 格式:PDF 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 36
客服
关注