季铵型纤维素的合成、表征及材料性能研究

VIP免费
3.0 牛悦 2024-11-19 4 4 2.34MB 70 页 15积分
侵权投诉
摘 要
本文以治理环境中低浓度、高毒性、生物难以降解的水溶性有机污染物为研
究目标,合成了一种新型环境功能材料—季铵型纤维素QACC并对 QACC
附水溶性有机污染物做应用基础研究。
本文优化了 QACC 的合成工艺:称取碱纤维 1.6g 放入锥形瓶中,加入 60mL
异丙醇,搅拌 5min滴加 12mL 4%的氢氧化钠水溶液和 6.0mL 503--2-羟丙基
三甲基氯化铵(CHPT)水溶液,75℃下反4h,产物用乙醇和蒸馏水洗涤后
抽滤,低温烘干。测得其含氮量为 1.65%,季铵基取代度为 0.233
利用元素分析仪测定了 QACC 的组成及各成分含量,其中氮 1.71%、40.4%、
6.93%。用溴化钾压片法对 QACC 和棉纤维进行了红外光谱分析,在 1637cm-1
处存在明显的季铵基团的弯曲振动峰;2916cm-1 处存在 C-H 的伸缩振动峰;
1386cm-1 处存在-CH3C-H 的弯曲振动峰;1050cm-1 处存在 C-O-C 的反对称吸收
峰。1637 cm-1 处的特征吸收峰表明合成得到的产物即为目标产物 QACCQACC
和棉纤维进行了电镜扫描和 X射线衍射分析,结果表明 QACC 经过醚化反应后,
纤维素晶体结构被破坏,比表面积大大增加,这种变化使 QACC 对污染物的吸附
量也大大增加。
考察了 QACC 的抗水解、抗氧化和抗紫外光照性能。QACC 放入弱酸、
碱和中性水溶液中浸泡4天,或用强氧化剂稀硝酸水溶液和双氧水溶液浸泡 80min
或经 300W 紫外光照80min QACC 氮量下降小于 5。表QACC 具有
很强的抗水解、抗氧化和抗紫外光照性能。
QACC 对水溶性有机污染物的饱和吸附容量:3.22mg 苯胺/g6.75mg 甲萘胺
/g13.7mg 苯酚/g33.2mg 甲萘酚/g12.1mg 苯甲酸/g33.6 mg α-萘甲酸/g23.5
mg 4-氨基苯磺/g52.8mg 2-萘磺/g112mg R /g30.1mg 2,3 /g168mg
十二烷基苯磺酸钠/g
考察水体中常见离子对 QACC 吸附性能的影响。由于 Fe3+Mn2+Al3+
中形成氢氧化物胶体,能吸附水溶液中的污染物,起到净水的作用,加入 Fe3+
Mn2+Al3+QACC 对酸性红 B的饱和吸附量略有些提高。加入其余离子 QACC
对酸性红 B吸附量影响不大,说明 QACC 对常见离子的抗干扰能力强。
研究了吸附过程的动力学问题,对 QACC 吸附酸性红 B进行了一级和二级动
力学方程拟和。结果表明二级拟和的线性相关系数明显高于一级,说明了 QACC
吸附酸性红 B更符合二级动力学方程式。并且吸附速率随着温度的升高而增大,
说明升高温度有利于吸附的进行,这种吸附属于化学吸附。计算了表观活化能 Ea
59.3KJ/mol,表明吸附较容易进行。
研究了吸附过程的热力学问题,对 QACC BFrendlich
Langmuir 等温吸附方程拟和。结果表明 QACC 吸附酸性B符合 Langmuir 等温
吸附方程,单分子吸附模型。计算了热力学参数,H>0表明该吸附过程为吸热
过程,升高温度对吸附有利,与动力学分析结果相一致;G<0 表明吸附可自发
进行。
通过饱和容量法和连续等摩尔法测定 QACC 附污染物的配位比,结果表
季铵基团与水溶性基团是 1:1 结合的。
研究 QACC 再生方法和循环利用问题,选择了洗脱剂的种类及浓度、温度和
脱附时间。试验证明,常温下用 0.1mol/LNaOH 液对吸附污染物后的 QACC
30min再用 0.1mol/L HCl 溶液活化,经过 7次重复使用后其饱和吸附容量减少
不到 7%,说明 QACC 具有很好的脱附再生性能。作为一种新型的环保吸附材料,
有可观的开发应用前景。
QACC 作为一种新型的吸附材料,具有生产成本低廉、设备简单、污染物去
除率高、可循环使用等特点,这些特点使其在去除环境中水溶性有机污染物时表
现出显著的优越性。本文对 QACC 吸附特定有机污染物提供理论基础和技术手段,
QACC 应用于纺织印染、石油钻井、日用化学品、生物医学、环境保护等领域
的研究工作具有参考价值。
关键词:季铵型纤维素 合成 理化性能 吸附 水溶性有机污染物
ABSTRACT
Quaternary ammonium cationic cellulose (QACC), a new environmental function
material, was synthesized to adsorb trace, highly toxic and non-biodegradable
watersoluble organic pollutants. In this paper, fundamental research work has been done
for the application of this material.
The preparation conditions were optimized. 1.6g alkali-treated and 60mL isopropyl
alcohol were placed to a Erlenmeyer flask, and stirred for 5 minutes. To this flask,
12mL 4% NaOH and 6.0mL 50% 3-chloro-2-hydroxypropyl trimethylammonium
chloride (CHPT) solution were added. The mixture was shaken up and reacted for 4h at
75. The product was washed with ethanol and water, and dried at low temperature. Its
nitrogen content was 1.65% and the substitution degree (DS) of R4N+was 0.233.
Infrared spectrometer was used to analyze the structure of QACC. Comparison for
the IR spectras of cotton cellulose and QACC indicates that QACC has a bending
vibration peak of R4N+at 1637 cm-1, antisymmetry adsorption peak of C-O-C at 1050
cm-1, a bending vibration peak of C-H (-CH3) at 1386 cm-1 and a stretching vibration
peak of C-H at 2916 cm-1. The characteristic peak at 1637 cm-1 confirms that the
synthesized product is QACC. The component of QACC was measured by elemental
analyzer with a result of 1.71 nitrogen, 40.4 carbon and 6.93 hydrogen. X-ray
diffraction and electron microscope scan show that QACC has a larger specific surface
area than that of cellulose fiber, which was cused by the etherification and brought a
larger absorptive saturation to contaminants.
The properties of QACC were studied. At room temperature, the nitrogen content
reduction ratio were less than 5% when QACC was immersed in aqueous solution with
pH 3,7,10 for four days, immersed in weak HNO3and H2O2aqueous solution and
irradiated in ultraviolet for 80 minutes. The results show that QACC has a great stability
with strong resistance to hydrolysis, oxidation and UV-irradiation.
The saturated adsorption capacity of QACC to watersoluble organic pollutants:
3.22 mg aniline/g, 6.75 mg α-naphthylamine/g, 13.7 mg phenol/g, 33.2 mg α-naphthol/
g, 12.1mg benzoic acid/g, 33.6 mg α-naphthoic acid/g, 23.5 mg
4-aminobenzenesulfonic acid/g, 52.8 mg β-naphthalenesulphonic acid/g, 112mg R salt/g,
30.1mg 2,3 acid/g, 168 mg sodium lauryl benzenesulfate/g.
The effects of common coexistic ion on the properties of QACC were studied. All
of the ions listed had little effects on QACC except for Fe3+Mn2+Al3+. Fe3+Mn2+
Al3+ creat colloid in water, which could adsorb contaminants. When they were added,
the saturated adsorption capacity of QACC was larger than when they were not. The
results show that QACC had strong ability to resist the interference of ions.
Dynamic ananlyses show that the adsorption of QACC follows the second-order
dynamic equation with a correlation coefficient of 0.999, which is higher than that of
the first-order equation. Furthermore, the adsorption speed increases along with the
temperature increase, that is say, it’s a chemical adsorption, for which temperature
increase is helpful. The apparent activation energy (Ea) is 59.3KJ/mol.
Thermodynamic analyses show that the adsorption of QACC follows Langmuir
equation with the correlation coefficient of 0.9948 which is larger than that of
Freundlich equation. It proves that this adsorption fits Langmuir equation better.
Langmuir equation is a monomolecular adsorption model. The thermodynamic
parameters H and G are compulated. H>0 confirms the heat-adsorbing reaction
and G<0 improves that the reaction could happen automatically.
The co-ordination ratio between QACC and contaminant was investigated by
saturation capacity method and equimolar series method. The results demonstrate the
co-ordination ratio is 1:1.
The eluted and regenerated methods were studied in this paper. Room temperature,
0.1mol/LNaOH water solution was used to elute the QACC for 30min after it adsorbed
contaminants, and 0.1mol/L HCl was used to activate QACC. The saturation capacity
decrease less than 10% when QACC was used 7 times. The experiments show that
QACC is a stable material and can be used after regenerated.
As a new sorbent, QACC have some advantages such as low cost, simple
equipments, renewable property and high removal rate to contamination, which make it
advantageous in the removing watersoluble organic contamination. In this paper,
fundamental research work and technical methods about the adsorption to some
particular contaminants has been done, which are useful to the application in textile and
printing, oil drilling, chemical commodity, biological iatrology and environmental
protection and so on.
Keywords: quaternary ammonium cationic cellulose, synthesize,
chemical and physical property, adsorb, watersoluble organic
pollutant
目 录
摘 要
ABSTRACT
第一章 .................................................................................................................1
§1.1 吸附原理及吸附材料 ........................................................................................... 1
§1.1.1 吸附原理及吸附类型.....................................................................................1
§1.1.2 吸附材料种类及其特点................................................................................2
§1.2 纤维素简介 ........................................................................................................... 5
§1.2.1 纤维素的结构................................................................................................5
§1.2.2 纤维素的化学反应........................................................................................7
§1.3 纤维素衍生物的开发和应用 .............................................................................. 9
§1.3.1 纤维素在医学中的应用.................................................................................9
§1.3.2 纤维素在复合材料中的应用......................................................................10
§1.4 纤维素衍生物作为吸附材料的研究进展 ......................................................... 10
§1.4.1 纤维素吸水材料...........................................................................................10
§1.4.2 纤维素吸油材料...........................................................................................11
§1.4.3 纤维素吸附重金属材料...............................................................................11
§1.5 季铵型纤维素在国内外的研究进展 ................................................................ 13
§1.5.1 纤维素阳离子化方法...................................................................................13
§1.5.2 季铵型纤维素在国内外的研究进展...........................................................15
§1.6 本论文的指导思想和研究目标 ........................................................................ 16
§1.7 本论文的研究内容及其特色 ............................................................................ 17
第二章 实验部分 .......................................................................................................... 19
§2.1 仪器和材料 ......................................................................................................... 19
§2.1.1 实验仪器和设备...........................................................................................19
§2.1.2 实验试剂和材料...........................................................................................19
§2.1.3 试剂配制.......................................................................................................21
§2.2 实验方法 ............................................................................................................ 22
§2.2.1 3--2-羟丙基三甲基氯化铵的合成 ......................................................... 22
§2.2.2 CHPT 熔点的测定 ....................................................................................... 23
§2.2.3 CHPT 含量的测定 ....................................................................................... 23
§2.2.4 季铵型纤维素的合成..................................................................................24
§2.2.5 季铵基团取代度的测定..............................................................................25
§2.2.6 红外光谱分析..............................................................................................26
§2.2.7 X-射线衍射光谱分析 .................................................................................. 26
§2.2.8 电镜扫描......................................................................................................26
§2.2.9 QACC 吸附容量的测定 .............................................................................. 26
第三章 实验结果与讨论 .............................................................................................. 28
§3.1 CHPT 的理化性能测定结果 ..............................................................................28
§3.1.1 CHPT 熔点测定结果 ................................................................................... 28
§3.1.2 CHPT 含量测定结果 ................................................................................... 28
§3.2 QACC 合成条件研究 ......................................................................................... 29
§3.2.1 正交实验.......................................................................................................29
§3.2.2 异丙醇浓度对取代度的影响......................................................................30
§3.2.3 CHPT 用量对取代度的影响 ....................................................................... 31
§3.2.4 氢氧化钠浓度对取代度的影响..................................................................32
§3.2.5 反应温度对取代度的影响..........................................................................32
§3.2.6 反应时间对取代度的影响..........................................................................33
§3.2.7 小结..............................................................................................................34
§3.3 QACC 结构表征 ................................................................................................. 34
§3.3.1 QACC 元素分析结果 .................................................................................. 34
§3.3.2 QACC 红外光谱图分析 .............................................................................. 34
§3.3.3 QACC X射线衍射图 ..............................................................................35
§3.3.4 QACC 扫描电镜图 ...................................................................................... 36
§3.3.5 小结..............................................................................................................36
§3.4 QACC 稳定性研究 ............................................................................................. 37
§3.4.1 QACC 抗水解性能研究 .............................................................................. 37
§3.4.2 QACC 破坏性试验 ...................................................................................... 37
§3.5 QACC 对水溶性有机中间体的吸附 ................................................................. 39
§3.6 环境水体中共存离子对 QACC 吸附容量的影响........................................... 40
§3.7 吸附过程动力学研究 ......................................................................................... 41
§3.7.1 QACC 吸附动力学曲线 .............................................................................. 41
§3.7.2 吸附速率......................................................................................................42
摘要:

摘要本文以治理环境中低浓度、高毒性、生物难以降解的水溶性有机污染物为研究目标,合成了一种新型环境功能材料—季铵型纤维素(QACC),并对QACC吸附水溶性有机污染物做应用基础研究。本文优化了QACC的合成工艺:称取碱纤维1.6g放入锥形瓶中,加入60mL异丙醇,搅拌5min,滴加12mL4%的氢氧化钠水溶液和6.0mL50%3-氯-2-羟丙基三甲基氯化铵(CHPT)水溶液,在75℃下反应4h,产物用乙醇和蒸馏水洗涤后抽滤,低温烘干。测得其含氮量为1.65%,季铵基取代度为0.233。利用元素分析仪测定了QACC的组成及各成分含量,其中氮1.71%、碳40.4%、氢6.93%。用溴化钾压片法对Q...

展开>> 收起<<
季铵型纤维素的合成、表征及材料性能研究.pdf

共70页,预览7页

还剩页未读, 继续阅读

作者:牛悦 分类:高等教育资料 价格:15积分 属性:70 页 大小:2.34MB 格式:PDF 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 70
客服
关注