基于复杂网络的证券市场小波分析

VIP免费
3.0 牛悦 2024-11-19 4 4 3.64MB 47 页 15积分
侵权投诉
摘 要
美国次贷危机引起的全球性金融危机不仅使美国的股市暴跌,其他国家的股
市也受到了巨大的冲击。作为新兴市场的我国股市受到了持续性影响,所以研究
金融危机下我国股市的动态特征具有现实意义。
本文首先采用小波变换方法分析沪深指数的波动趋势、小波经验功率谱、能
量谱密度及小波方差;发现指数序列小波经验功率谱和能量谱密度集中在大尺度
上,上证和深成指数的小波相关系数大于 0.9证实了股票收益率序列具有长记忆
特性,沪深两市长期保持强相关联系。为了进一步分析证券的分形特征,采用多
重分形消除趋势分析和小波变换模极大值分析指数序列及收益率序列的分形,并
比较得出上证指数的分形谱宽度小,多重分形程度弱。
沪深指数的相关性研究一直是学者们研究点,本文研究沪深指数收盘价月数
据,周数据,日数据的相关关系。采用可见图算法,将数据序列映射成网络形式,
通过网络的拓扑特征分析发现所构造出的网络具有无标度特征,再次证实证券市
场的分形;网络度和聚集系数呈现幂律分布,证实了网络具有等级结构。
小波是信号局部特征分析的良好工具,是数学的显微镜。本文采用最大交叠
离散小波变换,将月数据进行 2层分解,周数据进行 4层分解,日数据进行 6
分解,分析分解后的小波方差,小波协方差,小波相关系数。
最后从整个证券市场的宏观角度,针对部分股票波动收益率序列,采取“赢
者通吃”的原则构建无向无权复杂网络,对股市进行基本面分析。根据复杂网络
理论,证实证券市场具有无标度特征、小世界效应、社区结构和分形结构;并且
发现金融、地产行业是证券市场的核心板块;农业,林业等传统产业与市场的关
联性日趋减弱;对市场的影响力逐步降低。
关键词:离散小波变换 多重分形消除趋势波动分析 小波变换模极大
值法 可见图算法 最大交叠离散小波变换 复杂网络
ABSTRACT
Global financial crisis caused by U.S. subprime mortgage crisis crash not only the
U.S. stock market, but also other country's market. Chinese stock market as an
emerging market has been affected continuously, so it is practical significance to
research the dynamic characteristics of Chinese stock market.
Firstly, we use wavelet transform to analysis fluctuation, wavelet empirical power
spectrum, power spectral density and wavelet variance of Shanghai composite index
and Shenzhen composite index. We found the wavelet empirical power spectrum and
power energy density of index series were concentrated in large scales; the wavelet
cross-correlation coefficients were greater than 0.9, confirming that the stock return
series with long memory characteristics; Shanghai market and Shenzhen market is
strongly correlative connection for a long time. To know better the fractal property, we
employed multifraetal detrended fluctuation analysis and wavelet transform modulus
maxima analysis to reveal multifractal of market, then we draw a conclusion that the
fractal spectral width of Shanghai stock index was smaller, the multifractal degree was
weaker.
Correlation between the Shanghai and Shenzhen index has been a hot research
altogether; We studied the correlation among month data, weekly data and daily data
from the closing price on the Shanghai and Shenzhen index . By using visibility graph
algorithms, we mapped data sequence of the form of networks, topology characteristics
of the network showed that constructed network were scale-free property, the stock
market was confirmed fractal once again; network degree probability distribution and
cluster coefficients showed power-law distribution, confirmed the network was
hierarchy.
Wavelet is a good tool for analysising signal local characteristics, it is aslo
mathematical microscope. Via the maximum overlap discrete wavelet transform, we
decomposed the monthly data into two levels, weekly data into four levels, and daily
data into six levels, then compared the wavelet variance, wavelet covariance and
wavelet correlation coefficient.
Above is the technical analysis of the stock market, lastly we introduced some
fundamental analysis.Based on stock return series, undirected and unweighted complex
networks were constructed with the method of “winner-take-all”. According to the
theory of complex network, we confirmed that stock market show scale-free property,
small world effect, community structure and fractal structure. We also concluded that
finance and real estate industry are the most important industry of stock market; the
connection between traditional industry such as agriculture and forestry and market, as
well as its influence on the market is getting weaker and weaker.
Key word: Discrete wavelet transform, Multifraetal detrended
fluctuation analysis, Wavelet transform modulus
maximum, Visibility graph approach, Maximal overlap
discrete wavelet transform, Complex Network
目 录
摘 要
ABSTRACT
第一章 绪 论 ....................................................... 1
§1.1 研究背景 ................................................... 1
§1.2 研究现状 ................................................... 2
§1.2.1 证券市场小波分析研究现状 ............................... 2
§1.2.2 证券市场的分形研究现状 ................................. 2
§1.2.3 基于复杂网络理论的证券市场研究现状 ..................... 2
§1.3 研究内容 ................................................... 3
第二章 证券市场分形分析 ............................................ 4
§2.1 证券市场假说 ............................................... 4
§2.1.1 有效市场假说 ........................................... 5
§2.1.2 分形市场假说 ........................................... 5
§2.2 小波变换 ................................................... 6
§2.2.1 小波变换理论知识 ....................................... 6
§2.2.2 小波变换在证券市场分析中的应用 ........................ 10
§2.2.3 实证分析 .............................................. 11
§2.3 分形分析 .................................................. 14
§2.3.1 分形维数 .............................................. 15
§2.3.2 单分形算法 ............................................ 16
§2.3.3 多重分形算法 .......................................... 19
§2.4 本章小结 .................................................. 23
第三章 证券市场相关分析 ........................................... 24
§3.1 基于可见图指数序列的相关分析 .............................. 24
§3.1.1 可见图原理介绍 ........................................ 24
§3.1.2 复杂网络理论 .......................................... 25
§3.1.3 实证分析 .............................................. 25
§3.2 基于 MODWT 指数序列的相关分析 ........................... 28
§3.2.1 最大交叠离散小波变换理论 .............................. 28
§3.2.2 最大交叠离散小波方差 .................................. 29
§3.3 本章小结 .................................................. 31
第四章 证券市场网络分析 ........................................... 32
§4.1 社区结构 .................................................. 32
§4.2 分形结构 .................................................. 32
§4.3 实证分析 .................................................. 32
§4.4 本章小结 .................................................. 38
第五章 本文结论与展望 ............................................. 39
参考文献 .......................................................... 40
在读期间公开发表的论文和承担科研项目及取得成果 .................... 43
............................................................. 44
摘要:

摘要美国次贷危机引起的全球性金融危机不仅使美国的股市暴跌,其他国家的股市也受到了巨大的冲击。作为新兴市场的我国股市受到了持续性影响,所以研究金融危机下我国股市的动态特征具有现实意义。本文首先采用小波变换方法分析沪深指数的波动趋势、小波经验功率谱、能量谱密度及小波方差;发现指数序列小波经验功率谱和能量谱密度集中在大尺度上,上证和深成指数的小波相关系数大于0.9,证实了股票收益率序列具有长记忆特性,沪深两市长期保持强相关联系。为了进一步分析证券的分形特征,采用多重分形消除趋势分析和小波变换模极大值分析指数序列及收益率序列的分形,并比较得出上证指数的分形谱宽度小,多重分形程度弱。沪深指数的相关性研究...

展开>> 收起<<
基于复杂网络的证券市场小波分析.pdf

共47页,预览5页

还剩页未读, 继续阅读

作者:牛悦 分类:高等教育资料 价格:15积分 属性:47 页 大小:3.64MB 格式:PDF 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 47
客服
关注