工业电磁炉智能控制器研究

VIP免费
3.0 牛悦 2024-11-19 4 4 4.23MB 79 页 15积分
侵权投诉
摘 要
在当今大力倡导节能减排的形势下,工业热处理行业的运用效果不是很好,
主要表现在加热效率低、耗能严重、对环境的污染大等缺点。在出现电磁感应加
热以后,相关领域正在试图采用此办法来解决此类问题。电磁炉就是基于电磁感
应原理而制作的,但是,相比于民用、商业电磁炉等传统感应加热应用领域,
业电磁炉的的发展还很缓慢,主要表现在人们对传统电和煤气加热方式的依赖和
传统加热能源的观念转变不好,很大一部分企业的技术革新速度慢,不愿意花成
本根本上解决能源利用率问题。虽然有些企业或者研究机构正在对此进行一定的
改进,但是效果不是很好,这很大一部分体现在电磁炉控制器的效率低、电路拓
扑结构复杂、操作控制不良等缺点。本文在不考虑加热炉体参数设计的前提下,
专门对电磁炉控制器的电路拓扑结构和人工智能化控制方式等方面做了一定的
研究工作,并且取得了相应的成就。主要的研究工作有:
在分析电磁感应原理、负载等效电路、几种逆变器拓扑结构的基础上,研究
和设计了更具简单的工业电磁炉控制器的电路拓扑结构,对半桥串联谐振逆变器
的功率调节方式做了一定的对比研究,最后选定脉冲频率调制的方式来完成对电
磁炉功率的控制,最终确立了以 STM32 为控制核心控制器系统的整体控制方案。
在功率级电路的设计上,采用模块化的设计思想,根据性能指标对主电路和隔离
驱动电路的具体参数进行了详细的对比研究。在完成了以上的研究基础上,对控
制电路进行了详细的设计,主要包括温度、电流、电压、人机接口、故障报警、
等方面进行了模块化电路设计,并且在保护电路方面做了一定的工作,有效地提
高了功率开关管工作的安全性和可靠性。
在温度控制方面采PID 算法控制方式,并且提出了电磁炉温度 PID 整体
控制策略,对驱动脉冲频率进行调制,使系统具有更好地稳态性能,通过逆变器
的功率输出,从而间接地控制加热炉的内部温度,达到恒温控制的目的。在软件
设计的方面采用较流行的模块化设计细想,对整个控制器系统的软件进行模块划
分,并对模块化的软件进行详细设计,提高了系统软件的可靠性和复用率。
最后,在理论分析和电路详细设计的基础上,对实验样机进行了调试和测试,
实验表明,电磁炉控制器系统设计合理,安全性和稳定性高,恒温控制效果良好,
符合研究内容的要求。
关键词:感应现象 电磁炉 串联谐振 IGBT PID 控制
ABSTRACT
At present time, when the situation of energy conservation is vigorously
promoted, the application of industrial heat treatment is going down with its
disadvantages mainly reflected in the low heating efficiency, energy consumption and
serious environmental pollution. After the emergence of electromagnetic induction
heating the field is trying to use this approach to solve such problems. Cookers are
made based on the principle of electromagnetic induction. However, compared to the
traditional induction heating applications, such as civilian and commercial induction
cookers, the development of the industrial cookers is relatively slow, because of the
fact that people rely much on the traditional mode of electricity and gas heating and
the concept of energy heating is not positively transferred; the technological
innovations of a large part of enterprises are slow, they are unwilling to spend the cost
to solve the fundamental problems of utilization ratio of energy resources. Although
some companies or research institutions are engaged in improving, but the outcome is
unsatisfactory. This, in a large part is reflected in the low efficiency of the appliance
controller, the complexity of circuit topology and the poor operational control. This
paper does not consider the premise of the parameter design of the furnace body, but
specifically focuses on the control mode of the appliance controller circuit topology
and artificial intelligence, etc. a certain amount of research work and the
achievements. The main researches are:
In analyzing the principle of electromagnetic induction, load equivalent circuit
and several inverter topology, a simpler industrial cooker controller is investigated
and designed. Comparative studies have been done to the power conditioning of the
circuit topology of half-bridge series resonant inverter, and fianlly selected the pulse
frequency modulation control of the induction cooker power, thus established the
STM32 for the control of the core controller system overall control program. Power
level circuit design, the modular design concept, carried out a detailed comparative
study on the main circuit and isolation of the specific parameters of the drive circuit
according to the performance indicators. Based on the outcome of the above study,
the circuit control is also detailed designed, including temperature, current, voltage,
man-machine interface, fault alarm, and other aspects of the modular circuit design
and circuit protection must work to improve the safety and reliability of the power
switch.
In terms of temperature control, PID control algorithm has come out with a
cooker temperature PID overall control strategy, the drive pulse frequency modulation,
the system has a better steady state performance, power output of the inverter, and
thus indirectly control the heating of the internal temperature of the furnace, and
achieved the constant temperature control purposes. More popular modular designs
are reflected on aspects of software design, module division of the entire controller
system software, and modular software design, and thus will help to increase the
system software reliability and reuse rate.
Finally, on the basis of theoretical analysis and detailed circuit design, debugging
and tests have been done to the sample cookers. Experiments show that the cooker
controller system is appropriately designed, the system has high security and stability,
the thermostatic control is fairly effective, therefore is in line with the requirements of
the research.
Key Words: Induction
Cooker Series Resonant
IGBT
PID Control
目 录
中文摘要
ABSTRACT
第一章 绪论................................................................................................................. 1
§1.1 引言............................................................................................................. 1
§1.2 国内外研究现状......................................................................................... 2
§1.2.1 国外研究现状...................................................................................... 2
§1.2.2 国内研究现状..................................................................................... 3
§1.3 感应加热技术的经济效益分析................................................................ 4
§1.4 大功率电磁炉的特点和应用范围............................................................ 5
§1.4.1 大功率电磁炉的特点.......................................................................... 5
§1.4.2 大功率电磁炉的应用范围.................................................................. 5
§1.5 工业电磁炉发展趋势................................................................................ 5
§1.6 本章小结.................................................................................................... 7
第二章 工业电磁炉感应加热原理............................................................................. 8
§2.1 电磁感应原理............................................................................................ 8
§2.1.1 概述..................................................................................................... 8
§2.1.2 感应原理分析..................................................................................... 8
§2.1.3 感应加热的趋肤效应和透入深度................................................... 10
§2.2 工业电磁炉加热系统.............................................................................. 11
§2.3 负载输出等效电路分析.......................................................................... 12
§2.4 本章小结.................................................................................................. 15
第三章 电磁炉控制器系统设计............................................................................... 16
§3.1 系统结构框图.......................................................................................... 16
§3.2 逆变主电路拓扑分析.............................................................................. 17
§3.2.1 串联谐振逆变器................................................................................ 17
§3.2.2 并联谐振逆变器................................................................................ 18
§3.2.3 两种逆变形式比较........................................................................... 20
§3.3 半桥串联电压谐振电路分析.................................................................. 21
§3.4 工业电磁炉的功率调节方式.................................................................. 23
§3.5 本章小结.................................................................................................. 24
第四章 电磁炉控制器主电路设计........................................................................... 25
§4.1 功率模块化设计...................................................................................... 25
§4.1.1 EMI 滤波模块的设计 ........................................................................ 25
§4.1.2 AC/DC 整流模块的选取 ................................................................... 27
§4.2 滤波输入电容、电感参数设计................................................................. 28
§4.2.1 滤波输入电容参数计算.................................................................... 29
§4.2.2 滤波输入电感参数计算................................................................... 29
§4.3 逆变电路功率管的选型............................................................................ 31
§4.3.1 几种开关管性能对比........................................................................ 31
§4.3.2 IGBT 参数计算.................................................................................. 33
§4.4 谐振电容、电感参数计算........................................................................ 34
§4.5 功率管缓冲电路设计................................................................................ 35
§4.6 IGBT 驱动电路........................................................................................... 36
§4.6.1 IGBT 栅极驱动要求.......................................................................... 36
§4.6.2 IGBT 栅极驱动电阻的选择.............................................................. 38
§4.6.3 IGBT 驱动电路设计.......................................................................... 38
§4.7 硬件死区电路............................................................................................ 40
§4.8 本章小结..................................................................................................... 41
第五章 硬件控制电路与恒温策略研究................................................................... 42
§5.1 主控制器选择............................................................................................ 43
§5.2 温度检测电路............................................................................................ 44
§5.2.1 炉温检测电路.......................................................................................... 44
§5.2.2 IGBT 温度检测电路.......................................................................... 45
§5.3 母线电流、电压检测与保护电路............................................................. 46
§5.3.1 直流母线电压采集电路.................................................................... 46
§5.3.2 直流母线电流采集电路.................................................................... 47
§5.3.3 保护电路设计.................................................................................... 48
§5.4 人机接口电路............................................................................................. 48
§5.4.1 输入键盘与 LCD 显示电路.............................................................. 48
§5.4.2 系统工作状态与报警电路................................................................ 50
§5.5 风扇驱动电路............................................................................................. 51
§5.6 远程通信电路............................................................................................. 52
§5.7 恒温控制策略............................................................................................. 52
§5.7.1 典型的 PID 控制方式........................................................................52
§5.7.2 电磁炉温控系统................................................................................ 54
§5.8 本章小结..................................................................................................... 55
第六章 系统软件设计与结果分析........................................................................... 56
§6.1 系统软件模块化设计................................................................................ 56
§6.2 主程序设计................................................................................................ 57
§6.2.1 初始化模块....................................................................................... 58
§6.2.2 A/D 采样模块 .....................................................................................59
§6.2.3 故障报警模块................................................................................... 60
§6.2.4 温度控制模块................................................................................... 61
§6.2.5 键盘输入模块................................................................................... 62
§6.3 实验结果分析............................................................................................. 63
§6.3.1 实验样机........................................................................................... 63
§6.3.2 测试波形分析................................................................................... 64
§6.4 本章小结..................................................................................................... 67
第七章 总结与展望................................................................................................... 68
§7.1 设计目标与阶段成果................................................................................. 68
§7.2 后续工作..................................................................................................... 69
参考文献............................................................................................................... 71
在读期间公开发表的论文和承担科研项目及取得成果......................................... 74
致 谢........................................................................................................................... 75
摘要:

摘要在当今大力倡导节能减排的形势下,工业热处理行业的运用效果不是很好,主要表现在加热效率低、耗能严重、对环境的污染大等缺点。在出现电磁感应加热以后,相关领域正在试图采用此办法来解决此类问题。电磁炉就是基于电磁感应原理而制作的,但是,相比于民用、商业电磁炉等传统感应加热应用领域,工业电磁炉的的发展还很缓慢,主要表现在人们对传统电和煤气加热方式的依赖和传统加热能源的观念转变不好,很大一部分企业的技术革新速度慢,不愿意花成本根本上解决能源利用率问题。虽然有些企业或者研究机构正在对此进行一定的改进,但是效果不是很好,这很大一部分体现在电磁炉控制器的效率低、电路拓扑结构复杂、操作控制不良等缺点。本文在不...

展开>> 收起<<
工业电磁炉智能控制器研究.pdf

共79页,预览8页

还剩页未读, 继续阅读

作者:牛悦 分类:高等教育资料 价格:15积分 属性:79 页 大小:4.23MB 格式:PDF 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 79
客服
关注