多联机性能测试实验室的研制

VIP免费
3.0 侯斌 2024-11-19 4 4 2.18MB 78 页 15积分
侵权投诉
摘 要
本文依据国家标准 GB/T 18837-2002 和上海出入境检验检疫局技术协议要求,
设计并建造了一套 60HP 多联机性能测试实验室。主要工作包括实验室空气处理系
统、制冷系统、防爆系统、自动控制系统以及电气控制系统的设计和整个实验室
系统的施工,并成功地进行了系统的调试与被测机的测试。
在实验室环境系统设计中,首先对实验室的整体布局进行了设计,再对各种
气流组织形式进行了分析,并结合本次课题实际技术要求,
C套间室内侧采用下送
上回风的送风方式,室外侧因有可能改作室内侧运行,故和室内侧采用相同的送
风方式,即采用全孔板顶送下回风的送风方式,最大可能的保证了实验室内温度
场和速度场的均匀。在制冷系统设计中采用 BITZER 半封闭压缩机组获得较低的
温度,并采用曲轴箱压力调节阀和电磁喷液阀的方式调节,防止机组在低温工况
下的排气温度过高,保证低运行成本的情况下,仍能正常稳定运行,并获得比较
宽的实验温度范围(室内侧 10℃~45℃,室外侧-15℃~+55℃)采用变空气流量
和其它调节附件的方法获得较宽的湿度控制范围(30%90%
在温湿度的测控系统中,以响应速度快,操作简便,控制精度高的要求为基
准,采用热电偶和铂电阻对温度、湿度进行测量, PID 控制器分别对室内侧温度、
湿度,室外侧温度、湿度等进行自动控制;在电气控制系统中,针对温度、湿度、
压力等信号的采集和反馈,采用 PLC 进行控制,使系统的运行更加安全可靠,操
作更加直观简单。
其中,实验室的 A套间是最大可以测试 5HP 空调器的实验室,设计成为防爆
型实验室,所有相关选型设计均以防爆为设计基准。
经过现场调试和试验,本实验室不但能获得较宽的温湿度范围,而且能获得
较高的控制精度(温度误差≤±0.2℃,湿度误差≤±1%达到了本课题的相关
技术要求。该实验室已经在上海出入境检验检疫局顺利通过验收并投入使用,并
产生了积极的经济效益。
关键词多联机 性能测试 自动控制系统 制冷系统
ABSTRACT
Based on GB/T 18837-2002 and the technology Agreement required by Shanghai Entry-Exit
Inspection and Quarantine Bureau, this project featured the design and construction of a 60HP
Multi-connected air Conditioner Performance Testing Laboratory. The mission mainly consists of the
design and the construction of the air handling system, the refrigerating system, the explosion proof
system, the testing and auto-control system of the performance and the electrical control system. In
addition, successfully carried the system debugging and the air conditioner test.
In laboratory environment system designfirst arrange the lab overall layoutthen anal-yes
various kinds of modalities of air current composition on this topics practical technical requirements.
Component “C” use blowing pattern of underneath in and up back. It’s possible that outboard will
changed into inner side. So take the same blowing pattern as inner part’s upper blow into and
underneath off, utmost undertaken the balance of temperature field and velocity field of the
laboratory. In order to get low temperature in refrigerating system it takes “BITZER” semi-enclosed
compressors. Take crankcase pressure regulator and electromagnetic spray liquid valve make its
normal and steady operation in circumstance of low temperature refrigerating unit and at low
operating cost,to avoid high exhaust temperature,and get wide experiment temperature range(inner
side from 10to 45and outside from -15to 55); And takes variable air flow and adjust
accessories get wide humidity control range(30to 90).
In temperature & humidity of measurement and control system its criterion was fast response
user-friendly and high control accuracy. And use thermocouple and platinum resistor measuring
temperature and humidity, with PID controller autocontrol outer and inners temperature & humidity.
In electrical control system direct at temperature & humidity & pressure’s collection and feedback,
with PLC control the system, make it safe and reliable and simple.
Laboratory suite “A” is an air conditioner room can test maximums of 5HP. Design it as an
explosion proof type lab, relate lectotype design as criterion of explosion proof type.
After the commissioning and testing the lab not only obtain wide temperature & humidity
control range, but also achieve high control accuracy(the temperature error less than ±0.2 ,the
humidity error less than ±1), it reach this topic’s technical requirement. The lab has passed the
acceptance and put into use in Shanghai entry and exit inspection and quarantine and has positive
economic benefits.
Keywords: Multi-connected air Conditioner, Performance test, Automation test
system, Refrigeration system
摘 要
第一章 ····················································································· 1
§1.1 多联机空调系统 ................................................................................................1
§1.1.1 多联式空调系统简介 ···························································1
§1.1.2 多联式空调系统组成及其特点 ···············································1
§1.2 采用焓差法测试技术的意义 ............................................................................3
§1.2.1 采用焓差法测试技术的原因 ··················································3
§1.2.2 焓差法测试技术简介 ···························································4
§1.2.3 国内外焓差法测试技术的发展现状 ········································ 6
§1.3 本课题来源及主要工作 ....................................................................................6
§1.3.1 课题来源 ·········································································· 6
§1.3.2 技术要求 ·········································································· 7
§1.3.3 课题研究的主要内容 ·························································· 8
§1.3.4 课题研究的实施方案 ·························································· 9
第二章 空气处理及供水系统的设计 ······················································· 10
§2.1 实验室整体布局 .............................................................................................10
§2.2 库房设计 ..........................................................................................................11
§2.3 各室侧空气处理系统 ......................................................................................13
§2.3.1 空气处理系统方案的确定 ··················································· 13
§2.3.2 气流组织形式的选择 ························································· 14
§2.3.3 空气再处理设备的选型与设计 ············································· 16
§2.4 试验用供水系统的设计 ..................................................................................21
§2.4.1 C 套间恒温供水系统 ······················································· 21
§2.4.2 C 套间节能放热供水系统 ················································· 22
第三章 制冷机组的设计及选型 ··························································· 24
§3.1 制冷机组的整体设计 .....................................................................................24
§3.2 实验室冷负荷的相关计算 .............................................................................26
§3.2.1 库板漏热的计算 ······························································· 27
§3.2.2 操作热的计算 ·································································· 27
§3.3 制冷压缩机的选型 .........................................................................................28
§3.4 冷凝器的设计 .................................................................................................29
§3.5 蒸发器的设计 .................................................................................................30
§3.6 节流装置及其他附件的设计与选型 .............................................................35
§3.6.1 节流装置 ········································································ 35
§3.6.2 油分离器 ········································································ 36
§3.6.3 干燥过滤器 ····································································· 36
§3.6.4 气液分离器 ····································································· 37
§3.6.5 高低压控制器 ·································································· 37
§3.7 冷却塔及附属设备的设计与选型 ..................................................................37
§3.7.1 冷却塔 ··········································································· 37
§3.7.2 冷却水循环水泵 ······························································· 40
§3.7.3 限流截止阀 ····································································· 41
第四章 自动控制系统设计 ·····································································44
§4.1 控制系统概述 ..................................................................................................44
§4.1.1 自动控制系统设计的任务 ··················································· 44
§4.1.2 自动控制系统的设计流程 ··················································· 45
§4.2 控制方案的选择 ..............................................................................................47
§4.3 自控系统的硬件选型 ......................................................................................48
§4.3.1 选型原则与标准 ······························································· 48
§4.3.2 选型结果 ········································································ 48
§4.3.3 现场总线 ········································································ 52
§4.4 控制软件的设计 ..............................................................................................53
§4.4.1 软件设计流程 ·································································· 53
§4.4.2 控制规律的选取 ······························································· 54
§4.5 防爆系统的设计 ..............................................................................................56
§4.5.1 防爆系统的现场总线 ························································· 56
§4.5.2 点红外可燃性气体探测器 ··················································· 56
§4.6 监控系统的设计 ..............................................................................................59
第五章 系统调整与试验研究 ··································································60
§5.1 系统调试 ..........................................................................................................60
§5.1.1 软件调试 ········································································ 60
§5.1.2 硬件系统的调试 ······························································· 61
§5.2 工况试验与数据分析 ......................................................................................62
§5.2.1 极限工况试验 ·································································· 62
§5.2.2 工况调整速度试验 ···························································· 67
第六章 结论 ·······················································································72
第一章 绪论
1
第一章 绪 论
§1.1 多联机空调系统
§1.1.1 多联式空调系统简介
随着现代制冷工业的迅猛发展及人们生活水平的日益提高,空调等已逐渐成
为人们生活中的必需品。近年来制冷空调技术发展迅速,空调器正在从传统的单
室内机、单室外机的结构形式逐渐向单室外机多室内机及多室内机和多室外机系
统发展,系统结构也逐渐趋于复杂,其中最具代表性的是变制冷剂流量制冷系统
Variable Refrigerant Volume Air- conditioning System, 简称 VRV变制冷剂流量
空调机组大多数为多联式空调(热泵)机组(简称多联机)它最早出自日本,1982
年,全球第 1 台 VRV 多联式空调(热泵)机组诞生。2002 年,我国发布了第 1
采用新测试评价方法评价多联机的国家标准 GB/T 18837-2002 多联式空调(热泵)
机组。该标准中对多联式空调(热泵)机组的定义为一台或数台风冷室外机可连
接台数不同或相同形式、容量的直接蒸发式室内机构成单一制冷循环系统,它可
以向一个或数个区域直接提供处理后的空气[1]
§1.1.2 多联式空调系统组成及其特点
多联式空调系统一般由室内机、室外机及相连的管路和其它相关的附件部分
组成。常采用一台压缩机或多台压缩机带动多台室内机运行,室外侧主机由室外
侧换热器、压缩机和其它附件组成,多台室内机均由室内侧换热器和风机组成。
机组运行时,制冷剂由室外机压缩并且经过室外侧换热器后,通过管路进入各个
室内机。通过控制室外侧压缩机的制冷剂循环量和进入各室内侧换热器的制冷剂
流量,实时的满足室内侧对冷热负荷的需求。对于压缩机的制冷剂循环量的控制,
采用的方法通常有变频压缩机、卸载压缩机、多极压缩机或多台压缩机组合的方
式。对于室内机的制冷剂流量的调节,则是通过在制冷系统中设置电子膨胀阀
其它辅助回路的方法。由于工况的变化,系统中室内外侧的换热器的能力也会
应的发生变化,这个可以通过调节换热器附带的风扇的转速来达到目的[2,3,4]1-1
就是一个常见的多联机空调系统图。
多联机空调(热泵)机组集合了一拖多技术、节能技术、多重健康技术、智能
控制技术和网络控制技术等多种新技术,能够满足消费者对舒适性、方便性等方
多联机性能测试实验室的研制
2
面的要求。与传统空调相比,具有显著的优点[4]
1.与传统的分散式空调及集中式空调系统相比,多联机空调初期投资较少,
统简单、使用灵活、作用半径大、安装方便、运行安全可靠。
2.与中央空调系统相比,多联式空调机组占用空间少,设置灵活,不需要额
外设备间(层),仅一台室外机可放置于楼顶等地方,提高了建筑面积利用率。
3.节能:其室内机采用独立控制,室外机采用变频技术,可单独启动其中任意
一台室内机,也可多台室内机同时运行,季节能效比(SEER)高。
4.长配管、高落差,现如今,室内机与室外机之间的制冷剂配管长度可150
米,室内机与室外机之间的允许落差也能达40-50米,室内机之间的最高允许高
差为30米,因此其安装随意、方便、工作半径大。
5.容量自由组合:因为机组采用一拖多技术,所以采用的室内机可选择各种
规格,款式更可自由搭配,方便满足室内装修的各种不同需求。
1-1 常规多联机空调系统图
摘要:

摘要本文依据国家标准GB/T18837-2002和上海出入境检验检疫局技术协议要求,设计并建造了一套60HP多联机性能测试实验室。主要工作包括实验室空气处理系统、制冷系统、防爆系统、自动控制系统以及电气控制系统的设计和整个实验室系统的施工,并成功地进行了系统的调试与被测机的测试。在实验室环境系统设计中,首先对实验室的整体布局进行了设计,再对各种气流组织形式进行了分析,并结合本次课题实际技术要求,C套间室内侧采用下送上回风的送风方式,室外侧因有可能改作室内侧运行,故和室内侧采用相同的送风方式,即采用全孔板顶送下回风的送风方式,最大可能的保证了实验室内温度场和速度场的均匀。在制冷系统设计中采用BI...

展开>> 收起<<
多联机性能测试实验室的研制.pdf

共78页,预览8页

还剩页未读, 继续阅读

作者:侯斌 分类:高等教育资料 价格:15积分 属性:78 页 大小:2.18MB 格式:PDF 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 78
客服
关注