等离子喷涂纳米结构Al2O3-YSZ热障涂层组织与性能研究

VIP免费
3.0 侯斌 2024-11-19 4 4 4.05MB 66 页 15积分
侵权投诉
本文利用辊压振动磨对商用微米 α-Al2O37wt%Y2O3-ZrO2粉体研磨合成
6wt%Al2O3-YSZ 复合粉体。通过大气等离子喷涂方法在高温合金基体上制备了
双层结构热障涂层,粘结层为 NiCrCoAlY,陶瓷层由研磨处理后的 AYSZ 粉体
喷涂而成,此外在相同粘结层上喷涂商用微米 YSZ 粉体制备陶瓷层作为常规
YSZ 对比涂层。利用 SEMXRDBET Nanoindenter 等测试手段,对比分析
两种涂层的显微结构、力学性能、高温抗氧化和抗热震性能,并研究了微观组织
与相组成对涂层抗氧化和抗热震性能的影响规律。
研究结果表明,振动研磨过程中 Al2O3粉末与 ZrO2粉末粘结成具有包覆结
构的复合质点,反复碰撞和粘结作用达到平衡后形成固溶体。AYSZ 复合粉体平
均粒径约为 67μm,其中 ZrO2T相和 C相存在,没有发现 M相。通过 AYSZ
复合粉体高温煅烧实验,粉体中 TZrO2没有发生转变,有微量 α-Al2O3偏析,
说明 AYSZ 复合粉体适合作为等离子喷涂热障涂层原料。
振动研磨的 AYSZ 复合粉体经过等离子高温场,晶格间存储的大量层错能、
应变能被释放,形成含有 AlxZr1-xO2-0.5x
0.1<x<0.5固溶体的纳米结构涂层,
用谢乐公式计算 AYSZ 涂层平均晶粒度约为 52nm,而 YSZ 对比涂层经 SEM
察晶粒度大于 250nmAYSZ 涂层中 ZrO2主要为 T′相,而 YSZ 涂层中 ZrO2
主要为 T相。AYSZ 涂层的孔隙率、弹性模量和硬度都比 YSZ 涂层大。
从恒温氧化动力学曲线可以看出,纳米结构 AYSZ 涂层的抗氧化性能与常
YSZ 微米涂层基本相同。AYSZ 纳米涂层孔隙细小规则,微裂纹均匀分布,
无明显的方向性,这有利于降低涂层的热导率,从而提高隔热性能,但这些微裂
纹扩展成孔洞后,会加速 NiCrCoAlY 粘结层氧化,并产生巨大的应力导致涂层
失效。随着氧化温度提高,AYSZ 纳米涂层中 T′相 ZrO2分解为 T相和 C相,
AYSZ 纳米涂层使用温度应小于 1100℃。
AYSZ 纳米涂层高温下热震性能好于常规 YSZ 微米涂层。热震实验中 AYSZ
纳米涂层微裂纹扩展方向以沿晶为主,而常规 YSZ 微米涂层表面裂纹呈直线扩
展,表现为穿晶断裂。AYSZ 纳米涂层中,Al3+扩散进入 ZrO2的晶格中,使其结
构更加稳定,提高了 T′相 ZrO2高温稳定性。
以振动研磨的微米级粉体等离子喷涂制备纳米结构热障涂层,简化了传统纳
米涂层的制备方法,且表现较好的力学和抗热震性能,具有潜在的工程应用价值。
关键词:纳米结构涂层 等离子喷涂 Al2O3-YSZ 涂层组织 抗热震
ABSTRACT
In this dissertation, 6wt%Al2O3-YSZ composite was prepared by roller vibration
mill using commercial micro α-Al2O3 and 7wt%Y2O3-ZrO2 powders. Two-layer
structured thermal barrier coatings were prepared on super alloy by air plasma spray
of which the bond layer materials were NiCrCoAlY and the surface layer materials
were as-prepared AYSZ composite. In addition another suface layer was sprayed by
commercial micro YSZ powder on bond layer of same materials to prepare
comparative conventional YSZ coating. Comparison of both coatings microstructure,
mechanical properties, oxidation and thermal shock resistance was analyzed by SEM,
XRD, BET, Nanoindenter and other testing methods. The effect of microstructure and
phase composition on oxidation and thermal shock resistance was also investigated.
The results revealed that the bonding of Al2O3 and ZrO2 occurred in the process
of milling and formed composite particle of core-shell structure. The solid solution
was produced after the equilibrium of collision and bonding happened. The mean
diameter of AYSZ powder was 67μm. The main phase of ZrO2 were tetragonal and
cubic and the monoclinic phase was not introduced. The tetragonal phase in AYSZ
composite did not transform to monoclinic after calcination test, and traces of
α-Al2O3 were segregated, which indicated that AYSZ composite adapted to plasma
spraying thermal barrier coating.
High strain energy and stacking fault energy stored in vibration milled AYSZ
composite were released under high temperature of plasma and the nanostructured
coating which contained AlxZr1-xO2-0.5x(0.1<x<0.5) solid solution was formed. The
average grain size of AYSZ coating was 52nm estimated by Scherrer equation, while
that of YSZ coating was over 250nm observed by SEM. The main phase of AYSZ
coating was nontransformable tetragonal, while that of YSZ coating was tetragonal.
AYSZ coating had higher porosity, elastic modulus and hardness compared with YSZ
coating.
Oxidation kinetics exhibited that nanostructured AYSZ coating had same
oxidation resistance as conventional microstructured YSZ coating. Small pores and
non directional micro cracks were distributed homogeneously in AYSZ coating. This
resulted in lower thermal conductivity and higher heat isolation. However when these
micro cracks spread and became large pores, the rate of NiCrCoAlY bond layer
oxidation would accelerate and the following tremendous stress lead to coating failure.
The nontransformable tetragonal ZrO2 would decompose to tetragonal phase and
cubic phase with the increase of temperature, therefore the operating temperature of
AYSZ coating should be less than 1100.
Nanostructured AYSZ coating exhibited better resistance to thermal shock than
that of conventional microstructured YSZ coating in high temperature. The micro
crack of AYSZ coating propagated along grain boundary, while that of YSZ coating
spread straightly and presented transgranular fracture. Al3+ diffused in ZrO2 lattice in
AYSZ coating stabilized structure and improve the phase stability against high
temperature.
Preparation of nanostructured thermal barrier coating by plasma spraying
vibration milled micro powder simplifies conventional preparation method and the
coating has good mechanical properties and thermal shock resistance. Thus this
method possesses significant application potential.
Key Words: nanostructured coating, plasma spray, Al2O3-YSZ,
microstructure of coating, thermal shock resistance

ABSTRACT
第一章 .............................................................................................................. 1
§1.1 课题的研究意义.......................................................................................... 1
§1.2 热障涂层系统概述...................................................................................... 2
§1.2.1 热障涂层结构...................................................................................... 3
§1.2.2 热障涂层材料...................................................................................... 4
§1.2.3 热障涂层制备技术.............................................................................. 6
§1.2.4 热障涂层测试技术.............................................................................. 7
§1.3 等离子喷涂热障涂层.................................................................................. 9
§1.3.1 等离子喷涂原理及特点...................................................................... 9
§1.3.2 等离子喷涂热障涂层结构与性质...................................................... 9
§1.3.3 等离子喷涂热障涂层的性能与设计................................................ 10
§1.3.4 等离子喷涂工艺对热障涂层性能的影响........................................ 11
§1.4 氧化锆基热障涂层.................................................................................... 12
§1.4.1 氧化锆基热障涂层晶体结构和相变................................................ 12
§1.4.2 氧化锆基热障涂层物理性质............................................................ 13
§1.4.3 氧化锆基热障涂层失效机理............................................................ 14
§1.4.4 氧化锆基热障涂层研究方向............................................................ 15
§1.5 本课题研究内容........................................................................................ 17
第二章 等离子喷涂用 Al2O3-YSZ 复合粉体的制备及热稳定性研究 ................. 19
§2.1 引言............................................................................................................ 19
§2.2 机械化学法................................................................................................ 19
§2.2.1 机械化学法概述................................................................................ 19
§2.2.2 机械振动磨概述................................................................................ 20
§2.2.3 实验所用振动磨及其操作................................................................ 21
§2.3 材料及研磨过程........................................................................................ 23
§2.3.1 实验仪器及选材................................................................................ 23
§2.3.2 粉体研磨过程.................................................................................... 23
§2.3.3 试验结果与分析................................................................................ 24
§2.4 热稳定性实验............................................................................................ 28
§2.4.1 实验方法............................................................................................ 28
§2.4.2 相组成分析........................................................................................ 28
§2.4.3 显微结构分析.................................................................................... 29
§2.5 本章小结.................................................................................................... 30
第三章 等离子喷涂 AYSZ 涂层显微结构及力学性能 ......................................... 31
§3.1 引言............................................................................................................ 31
§3.2 喷涂材料及设备........................................................................................ 31
§3.2.1 基体材料............................................................................................ 31
§3.2.2 涂层材料............................................................................................ 31
§3.2.3 等离子喷涂设备................................................................................ 32
§3.2.4 等离子喷涂预处理............................................................................ 33
§3.3 涂层制备及测试方法................................................................................ 33
§3.3.1 等离子喷涂工艺................................................................................ 33
§3.3.2 涂层表征仪器与测试设备................................................................ 33
§3.3.3 测试方法与数据计算........................................................................ 34
§3.4 结果与讨论................................................................................................ 35
§3.4.1 涂层相组成分析................................................................................ 35
§3.4.2 显微结构分析.................................................................................... 36
§3.4.3 孔隙率的分析.................................................................................... 38
§3.4.4 涂层力学性能的分析........................................................................ 39
§3.5 本章小结.................................................................................................... 40
第四章 等离子喷涂 AYSZ 涂层抗氧化和抗热震性能 ......................................... 41
§4.1 引言............................................................................................................ 41
§4.2 试验方法和仪器........................................................................................ 41
§4.2.1 实验仪器设备.................................................................................... 41
§4.2.2 氧化实验............................................................................................ 41
§4.2.3 热震实验............................................................................................ 42
§4.3 等离子喷涂 AYSZ 涂层抗氧化性能 ....................................................... 42
§4.3.1 氧化动力曲线.................................................................................... 42
§4.3.2 组织结构对抗氧化性能影响............................................................ 43
§4.3.3 相组成对抗氧化性能影响................................................................ 46
§4.4 等离子喷涂 AYSZ 涂层抗热震性能 ....................................................... 48
§4.4.1 纳米与微米涂层抗热震性能比较.................................................... 48
§4.4.2 组织结构对抗热震性能影响............................................................ 48
§4.4.3 相组成对抗热震性能影响................................................................ 51
§4.5 本章小结.................................................................................................... 52
第五章 结 ............................................................................................................ 53
参考文献...................................................................................................................... 55
在读期间公开发表的论文和承担科研项目及取得成果.......................................... 61
.......................................................................................................................... 62
摘要:

摘要本文利用辊压振动磨对商用微米α-Al2O3和7wt%Y2O3-ZrO2粉体研磨合成6wt%Al2O3-YSZ复合粉体。通过大气等离子喷涂方法在高温合金基体上制备了双层结构热障涂层,粘结层为NiCrCoAlY,陶瓷层由研磨处理后的AYSZ粉体喷涂而成,此外在相同粘结层上喷涂商用微米YSZ粉体制备陶瓷层作为常规YSZ对比涂层。利用SEM、XRD、BET和Nanoindenter等测试手段,对比分析两种涂层的显微结构、力学性能、高温抗氧化和抗热震性能,并研究了微观组织与相组成对涂层抗氧化和抗热震性能的影响规律。研究结果表明,振动研磨过程中Al2O3粉末与ZrO2粉末粘结成具有包覆结构的复合质点,...

展开>> 收起<<
等离子喷涂纳米结构Al2O3-YSZ热障涂层组织与性能研究.pdf

共66页,预览7页

还剩页未读, 继续阅读

作者:侯斌 分类:高等教育资料 价格:15积分 属性:66 页 大小:4.05MB 格式:PDF 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 66
客服
关注