ZnO纳米线生长工艺可控性研究

3.0 侯斌 2024-11-19 6 4 4.6MB 68 页 15积分
侵权投诉
中文摘要
有关于 ZnO 纳米线的研究当前和将来很长一段时间必然会非常的热门,因为
ZnO 是一种具有压电性能的半导体材料,相比于 GaN ZnSeZnO 具有较大的直
接禁带宽3.37eV和高的激子结合能60eV), 所以 ZnO 纳米线被用来做发光二
极管和纳米激光器等微型光电器件。此外ZnO 的晶体结构是纤锌矿结构直接导
致了它的压电效应,因而 ZnO 纳米材料是理想的纳米发电机的材料。
随着纳米机电系统的快速发展,ZnO纳米线被大量地用来制造各种各样的纳
米功能器件,例如纳米发电机、生物传感器和太阳能电池等等。特定形貌和性能
ZnO 纳米结构可控合成是促进器件应用的关键所在。同样地,合理地解释 ZnO
纳米线的生长动力学对开发新的生长工艺也具有非常重要的意义。然而,到目前
为止大规模可控合成 ZnO 纳米线以及精确地解释其生长动力学仍然是比较困难和
充满挑战的。
在这篇论文中,我们致力于研究化学气相沉积法可控地合成 ZnO 纳米线,具
体而言,首先,我们探索了化学气相沉积法的工艺条件对 ZnO 纳米线生长和性能
的影响,并初步研究其各工艺条件的作用机理。最后初步实现了 ZnO 纳米线的可
控合成并得到了 ZnO 纳米线阵列最优的生长工艺。
其次,我们使用化学气相沉积法系统地研究了 ZnO 纳米超结构的生长。通过
二次生长的方法合成各种各样的 ZnO 纳米超结构,例如纳米簇、纳米天线等。通
过大量的实验现象系统地研究了 ZnO 纳米线的二次生长模式:第一种二次生长模
式是在二次生长的过程中 ZnO 纳米线继续沿着轴向生长;第二种二次生长模式是
纳米沿着径向生长;第三种二次生长模式是 ZnO 纳米线沿着轴向和径向“生长”
事实上,是发生纳米结构重组。我们讨论这些超结构的生长机理并对这些超结构
的光致发光性能进行了研究,结果发现不同的二次生长模式的 ZnO 纳米超结构的
光致发光性能会存在差异,而且我们发现这些超结构的形成是由第一次生长后的
ZnO 纳米线的结构和性能决定的。
我们还利用简单的化学气相沉积法合成了 P型导电性的 ZnO 纳米线,并通过
改变 P的掺杂量实现了其光致发光性能的调控。形貌表征表明 P掺杂抑制轴向生
长,促进径向生长。随着掺杂浓度的增加ZnO 纳米线变得越短越粗,并当浓度
5%时形成片状结构。在 325nm He-Cd 光源激发下,ZnO 纳米线有很强的绿
光发光峰,这意味着它们可以用来做绿光发光器件。
通过本文的工作,我们使用化学气相沉积法初步掌握了生长工艺对 ZnO 纳米
线生长的影响并初步实现了它的可控合成。此外我们对化学气相沉积法合成 ZnO
纳米线的生长动力学有了更深入的了解,这对我们开发新的 ZnO 纳米线生长工艺
和新的 ZnO 纳米器件起到非常积极的作用。
关键词:氧化锌 纳米结构 可控合成 二次生 光致发光
ABSTRACT
ZnO nanowire has triggered a heated research interest, because it is piezoelectric
material, as well as semiconductor material. ZnO naowires have been well applied to
photoelectric devices, for instance, light-emitting diodes and nano-lasers, attributed to
their wide direct band gap (3.37eV) and high exciton binding energy (60eV)
comparing with GaN and ZnSe. What is more, ZnO nanowires are promising
candidates for nano-generators for their piezoelectric property, which is caused by
their wurtzite structure of crystal.
Along with the rapid development of nano-electrical and mechanical system, ZnO
nanowires are widely employed to fabricate and assemble various nanoscale
functional devices, for instance, nano-generators, solar cells and biosensors. In
consequence, specific morphology and properties of ZnO nanostructures are critical
for their technological implications and devices fabrication. Similarly, it is very
helpful and meaningful to develop novel growth technology that the growth kinetics
of ZnO nanowires is explained reasonably. However, Up to date controlled large-scale
synthesis of ZnO nanoswires and accurately describe their growth kinetics is still very
difficult and full of challenges.
In this thesis, we dedicated to controlled synthesis of ZnO nanowires by chemical
vapor deposition (CVD). To be specific, first and foremost, we explored the influence
of growth technology on the growth and properties of ZnO nanowires, and observed
their mechanism. Consequently, we succeeded in controlling nanowires growth and
verified the optimal growth conditions of ZnO nanowire arrays.
Secondly, ZnO nano-superstructures were synthesized by chemical vapor
deposition. Exactly, second growth method is employed to synthesize various kinds of
nano-superstructures, nano-clusters, nano-antenna, for instance. By abundant
experiment phenomena, three regrowth modes in the sencod step growth were
summarized: the first regrowth mode is that ZnO nanowires would proceed to grow
along axial direction; the second regrowth mode is that ZnO nanowires grow along
radial direction; and the final regrowth mode was that ZnO nanowires would “grow”
along both axial and radial directions, exactly it is restructuring process. The growth
mechanism and photoluminescence of those nano-superstructures were observed; the
results suggested that the photoluminescence properties were diverse. What is more,
thesenano-superstructures seem to be determined by the initial ZnO nanowire
templates.
Finally, P-doped ZnO nanowires were successfully synthesized by simple chemical
vapor deposition using phosphorus pentoxide as dopant source. The
photoluminescence properties of P-doped ZnO nanowires were controlled by altering
the ratio of dopant which is phosphorus pentoxide. Morphology characterization
demonstrated that P doping suppressed the axial growth and enhanced the lateral
growth of ZnO NWs. The NWs grow thicker and lower with increasing
P2O5concentrations and form flake-like nanostructures when the weight percent of
P2O5
The influences of growth technology on ZnO nanowires were verified, and
controlled the synthesis of ZnO nanowires in principle. Also, we learned more about
the growth kinetics of ZnO nanowires, it was very meaningful and important to
develop novel growth technology and ZnO nano-devices.
was over five percentage. Intense green light emission from P-doped ZnO
nanowires was observed when excited by 325 nm HeCd laser, which means that
these NWs are good candidates for green light emission devices.
Keywords: ZnO, nanostructures, controlled synthesis, second growth,
Photoluminescence
I
中文摘要
ABSTRACT
第一章 .............................................................................................................. 1
§1.1 ZnO纳米线的研究意义 ................................................................................... 1
§1.2 ZnO纳米线制备方法 ....................................................................................... 2
§1.2.1 化学气相沉积法 ...................................................................................... 2
§1.2.2 模板法 ...................................................................................................... 3
§1.2.3 溶胶凝胶法 .............................................................................................. 3
§1.2.4 分子束外延法 ........................................................................................... 4
§1.3 ZnO纳米线生长机理 ....................................................................................... 4
§1.3.1 --固生长机理 .................................................................................... 4
§1.3.2 -固生长机理 .......................................................................................... 5
§1.3.3 模板辅助生长机理 ................................................................................... 5
§1.4 ZnO纳米线的主要性能以及应用 ................................................................... 6
§1.4.1 场发射性能 ............................................................................................... 6
§1.4.2 电运输性能 ............................................................................................... 6
§1.4.3 光学性能 ................................................................................................... 7
§1.4.4 压电性能 ................................................................................................... 7
§1.5 ZnO纳米线的研究进展 ................................................................................... 7
§1.5 本论文的研究内容 ........................................................................................ 17
§1.5.1 ZnO纳米线生长工艺的研究 .................................................................. 17
§1.5.2 ZnO纳米超结构生长 .............................................................................. 17
§1.5.3 P掺杂对ZnO纳米线的影响 .................................................................... 18
第二章 实验设备与表征手段 .................................................................................. 19
§2.1 实验设备介绍 ............................................................................................... 19
§2.1.1 可控气氛管式炉 ..................................................................................... 19
§2.1.2 高真空电子束蒸发系统 ......................................................................... 20
§2.2 表征设备和表征手段 ................................................................................... 20
§2.2.1 光谱仪 ..................................................................................................... 20
§2.2.2 X射线衍射仪 .......................................................................................... 21
§2.2.3 场发射扫描电子显微镜 ......................................................................... 22
II
§2.2.4 场发射透射电子显微镜 ......................................................................... 23
§2.3 本章小结 ........................................................................................................ 24
第三章 ZnO纳米线生长工艺的研究 ....................................................................... 25
§3.1 化学气相沉积系统的搭建与调试 ................................................................ 25
§3.2 ZnO纳米线制备所需原料与过程 ................................................................. 26
§3.2.1 制备ZnO纳米线原料和试剂 .................................................................. 26
§3.2.2ZnO纳米线制备过程 ............................................................................... 27
§3.3 ZnO纳米线生长工艺参数的研究 ................................................................. 27
§3.3.1 生长温度对ZnO纳米线生长的影响 ...................................................... 28
§3.3.2 催化剂对ZnO米线生长的影响 .......................................................... 31
§3.3.3 氧气对ZnO纳米线生长的影响 .............................................................. 34
§3.3.4 载气流量对ZnO纳米线生长的影响 ...................................................... 37
§3.4 本章小结 ........................................................................................................ 38
第四章ZnO纳米超结构生长的研究 ......................................................................... 40
§4.1 ZnO纳米线的三种二次生长规律 ................................................................. 40
§4.2 ZnO纳米线的轴向二次生长 ......................................................................... 41
§4.3 ZnO纳米线的径向二次生长 ......................................................................... 43
§4.4 ZnO纳米线的重组装二次生长 ..................................................................... 46
§4.5 本章小结 ........................................................................................................ 47
第五章 P掺杂对ZnO纳米线的影响 ......................................................................... 49
§5.1 实验方法与内容 ........................................................................................... 49
§5.2 P掺杂对ZnO纳米线形貌的影响 ................................................................... 50
§5.3 P掺杂对ZnO纳米线光致发光性能的影响 ................................................... 53
§5.4 本章小结 ....................................................................................................... 54
第六章 总结与展望 .................................................................................................. 56
§6.1 总结 ................................................................................................................ 56
§6.2 展望 ................................................................................................................ 56
参考文献 .................................................................................................................... 58
在读期间公开发表的论文和承担科研项目及取得成果 ........................................ 63
.......................................................................................................................... 64
第一章
1
第一章
§1.1 ZnO 纳米线的研究意义
材料、能源以及信息已经成为现代经济发展的动力源泉。特别今年来,能源
危机以及信息安全等问题的出现,新材料在这些方面的应用引起了科研工作者的
广泛的兴趣。在上世纪九十年代召开的第一届国际纳米科技会议上,纳米材料被
正式地确立为一个独立的学科分支,这标志着纳米科学作为一个新兴的学科的诞
生,纳米科学作为一种交叉学科,其研究领域涉及物理、材料生物、化学以及
机械等等,最后逐渐形成了纳米科学与材料学、物理学相互交叉的众多学科。
纳米科学在新材料、能源、信息技术、生物医学以及微电子工业等领域有着巨
大的应用潜力。科技发达的国家不断地加大对纳米科学领域的研究的投入,纳米
科学技术的飞速发展已经科学技术的进步和社会发展等方面产生了巨大的影响。
纳米,是一种长度单位,约为原子直径的 35倍,具体大小为 10-9m。纳米
材料是指在三维空间中,至少有一维的尺度小于 100nm 或以它为基本单位而组成
的材料。纳米材料从成分上分:纳米材料和掺杂纳米材料。从维度上分为:零维
纳米材料,例如纳米粒、纳米团;一维纳米材料,如纳米线、纳米管;二维纳米
材料,如纳米薄膜;三维纳米材料;纳米复合材料;纳米结构。使用纳米材料实
现器件微型化的同时,纳米材料在光、力、电等方面体现出了与宏观材料不同的
独特的性能,近年来,纳米材料已经成为能源、电子、材料、医学等研究领域最
为热门研究兴趣之一。
1-1 ZnO 的纤锌矿结构模型
Figure1-1 Schematic model of wurtzite structure of ZnO.
ZnO 是一种典型的具有压电性能的半导体材料,它最为常见的晶体结构是红
锌矿结构,这种结构最为稳定,每个锌原子或者氧原子都和与其相邻的氧原子或
摘要:

中文摘要有关于ZnO纳米线的研究当前和将来很长一段时间必然会非常的热门,因为ZnO是一种具有压电性能的半导体材料,相比于GaN和ZnSe,ZnO具有较大的直接禁带宽(3.37eV)和高的激子结合能(60eV),所以ZnO纳米线被用来做发光二极管和纳米激光器等微型光电器件。此外,ZnO的晶体结构是纤锌矿结构直接导致了它的压电效应,因而ZnO纳米材料是理想的纳米发电机的材料。随着纳米机电系统的快速发展,ZnO纳米线被大量地用来制造各种各样的纳米功能器件,例如纳米发电机、生物传感器和太阳能电池等等。特定形貌和性能的ZnO纳米结构可控合成是促进器件应用的关键所在。同样地,合理地解释ZnO纳米线的生长动...

展开>> 收起<<
ZnO纳米线生长工艺可控性研究.pdf

共68页,预览7页

还剩页未读, 继续阅读

作者:侯斌 分类:高等教育资料 价格:15积分 属性:68 页 大小:4.6MB 格式:PDF 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 68
客服
关注