R-134a在板式换热器中凝结换热特性的实验研究
VIP免费
中文摘要
板式换热器作为一种高效紧凑的换热设备,与传统的管壳式换热器相比具有
更好的传热性能和更小的阻力损失,被广泛应用在空调、化工、采暖、石油等领
域,并且在越来越多的场合受到人们的关注和推广。因此,板式换热器的传热性
能和阻力压降成为人们研究的主要内容。到现在,对于板式换热器内部单相流体
之间的换热和压降性能的研究已经比较成熟,并有相关的经验关联式,但是对于
存在相变的两相流体的换热和压降的性能研究还比较少。本文是在实验的基础上,
使用循环迭代模拟计算板式换热器中凝结换热时的局部换热性能和阻力压降。
本文的实验是在德国 Helmut Schmidt 大学热力学研究所进行的,主要针对
R134a 在板式换热器的凝结换热性能的研究。本课题的研究得到德国科学研究会的
资助(项目名称:板式换热器凝结换热的实验研究和建模,编号:KA1211/21-1)。
测试装置所用的蒸发器和冷凝器为德国 GEA公司提供的双人字形波纹板式换热器。
在板式换热器试件的水侧通道和板壁上分别布置了一组温度测点,通过对蒸发器
和冷凝器中水侧和板壁温度的测量以及对水侧流体建立能量平衡方程并进行计算,
可以得到板式换热器中的局部热流密度和局部壁面温度,从而得到局部换热系数。
文章中介绍了这一实验研究的装置、方法和部分实验结果,提出了根据实验
数据获得制冷剂侧局部换热系数的数据处理方法,并对制冷剂侧局部换热系数随
干度、质量流速、饱和温度(压力)的变化关系进行了分析。实验结果表明,换
热系数随干度和质量流速的增大以及饱和温度(压力)的降低而呈上升的趋势。
此外,在实验数据的基础上,选取适合本实验环境工况的经验公式和准则关联式,
建立了一套数学模型,通过迭代计算,模拟计算出板式换热器中凝结换热的局部
换热系数和局部阻力压降,可以帮助更好的分析换热器中两相流阶段的换热性能。
之后,计算出不同工况下的修正系数,今后可以在这个基础上,建立程序,在给
定实验工况的条件下,可以计算出整个实验的换热情况,为产品的应用提供实用
价值。
关键词:R134a 板式换热器 凝结 数值计算
ABSTRACT
The plate heat exchangers have been widely used in food processing, chemical
reaction processes and other industrial applications for many years. Due to their high
efficiency and compactness, the utilization of plate heat exchangers in refrigeration and
air conditioning systems is popular. Compared with other heat exchangers, plate heat
exchangers have better heat transfer performance and less frictional pressure drop.
Recently, some studies about the plate heat exchangers have been reported in the open
literature focusing on the single phase liquid to liquid heat transfer. But there is little
data available for the design of plate heat exchangers used as condensers and
evaporators. In this study, the characteristics of condensation heat transfer and pressure
drop for refrigerant R134a flowing in a plate heat exchanger were investigated
experimentally.
The present study belongs to the DFG project “Experimental research and
modeling of condensation heat transfer in plate heat exchangers” (KA1211/21-1). The
experiments were conducted at Helmut Schmidt University in Hamburg, Germany. All
the experiments are to research the heat transfer performance and pressure drop for
R134a flowing in a plate heat exchanger. The evaporator and condenser used in our test
setup were plate heat exchangers of a chevron type provided by GEA Ecoflex GmbH in
Germany. Local temperature distributions of plates and ethylene glycol/water mixture
were measured and were used for the deduction of local heat flux and heat transfer
coefficients. The experiments were carried out under different values of refrigerant mass
flow rate.
The test setup, data treatment method and result analysis are introduced in the
thesis. Especially, we proposed a data reduction method for obtaining the heat transfer
coefficient at the refrigerant side and discussed the relationships of the local heat
transfer coefficient at the refrigerant side with the refrigerant vapor quality, mass flux
and saturation temperature. The data analyses show that the local heat transfer
coefficients of condensation of R134a go up with increase of vapor quality and mass
flux and with decrease of saturation temperature. Furthermore, set up a mathematical
model, and made a Numerical calculation to the plate heat exchanger on the basis of the
experiment data, then condensation heat transfer coefficient and pressure drop were
obtained. Besides, the variations of revision coefficients were compared in the thesis. It
is a foundation for the future to establish a numerical calculation program.
Keywords: R134a, plate heat exchanger, condensation, Numerical
calculation
目 录
中文摘要
ABSTRACT
第一章 绪论 ........................................................ 1
§1.1 背景 .................................................... 1
§1.2 板式换热器简介 .......................................... 2
§1.2.1 板式换热器的结构 ................................... 2
§1.2.2 板式换热器的优点 ................................... 2
§1.2.3 板式换热器的缺点 ................................... 4
§1.3 板式换热器研究现状 ...................................... 4
§1.4 气液两相流 .............................................. 6
§1.5 本文研究内容 ............................................ 7
第二章 理论基础 .................................................... 8
§2.1 板式换热器中传热过程分析 ................................ 8
§2.1.1 对流换热 ........................................... 8
§2.1.2 相变换热 ........................................... 8
§2.1.3 导热 ............................................... 8
§2.2 制冷剂 .................................................. 8
§2.2.1 R134a 和 R410A 的比较 ............................... 9
§2.3 物性查询 ............................................... 11
§2.4 凝结换热 ............................................... 11
§2.4.1 膜状凝结分析解及关联式 ............................ 12
§2.5 换热计算过程 ........................................... 15
§2.5.1 单相水间的换热 .................................... 15
§2.5.2 凝结换热 .......................................... 16
§2.5.3 阻力系数计算 ...................................... 17
§2.6 本章小结 ............................................... 18
第三章 实验系统 .................................................. 19
§3.1 实验台介绍 ............................................. 19
§3.1.1 数据采集系统 ...................................... 20
§3.2 实验主要设备 ........................................... 20
§3.3 实验数据的不确定度分析 ................................. 24
§3.3.1 不确定度分析的的概念和分析方法 .................... 24
§3.3.2 实验数据的不确定度分析 ............................ 25
§3.4 实验步骤 ............................................... 27
§3.5 本章小结 ............................................... 27
第四章 实验数据分析 .............................................. 28
§4.1 制冷剂流量 ............................................. 28
§4.2 简易计算模型 ........................................... 29
§4.3 制冷剂流量对换热性能的影响 ............................. 30
§4.4 制冷剂冷凝压力及流量对换热性能的影响 ................... 31
§4.5 两相区压降分析 ......................................... 32
§4.6 结论 ................................................... 33
第五章 数值计算 .................................................. 34
§5.1 简化模型 ............................................... 34
§5.2 数学模型建立 ........................................... 34
§5.2.1 压降计算模型 ...................................... 34
§5.2.2 制冷剂侧凝结换热计算 .............................. 37
§5.2.3 冷却水侧换热计算 .................................. 37
§5.2.4 传热系数计算 ...................................... 38
§5.2.5 壁温计算 .......................................... 38
§5.3 迭代思路分析 ........................................... 38
§5.4 计算结果 ............................................... 39
§5.5 误差分析 ............................................... 43
§5.6 本章小结 ............................................... 44
第六章 总结与展望 ................................................ 45
§6.1 总结 ................................................... 45
§6.2 存在的问题与展望 ....................................... 45
参考文献 ......................................................... 47
符号表 ........................................................... 51
在读期间公开发表的论文和承担科研项目及取得成果 ................... 52
致 谢 ........................................................... 53
摘要:
展开>>
收起<<
中文摘要板式换热器作为一种高效紧凑的换热设备,与传统的管壳式换热器相比具有更好的传热性能和更小的阻力损失,被广泛应用在空调、化工、采暖、石油等领域,并且在越来越多的场合受到人们的关注和推广。因此,板式换热器的传热性能和阻力压降成为人们研究的主要内容。到现在,对于板式换热器内部单相流体之间的换热和压降性能的研究已经比较成熟,并有相关的经验关联式,但是对于存在相变的两相流体的换热和压降的性能研究还比较少。本文是在实验的基础上,使用循环迭代模拟计算板式换热器中凝结换热时的局部换热性能和阻力压降。本文的实验是在德国HelmutSchmidt大学热力学研究所进行的,主要针对R134a在板式换热器的凝结换...
相关推荐
-
VIP免费2025-01-09 6
-
VIP免费2025-01-09 6
-
VIP免费2025-01-09 6
-
VIP免费2025-01-09 6
-
VIP免费2025-01-09 6
-
VIP免费2025-01-09 7
-
VIP免费2025-01-09 6
-
VIP免费2025-01-09 7
-
VIP免费2025-01-09 7
-
VIP免费2025-01-09 6
作者:侯斌
分类:高等教育资料
价格:15积分
属性:57 页
大小:2.05MB
格式:PDF
时间:2024-11-19