ACE抑制肽定量构效关系研究

VIP免费
3.0 侯斌 2024-11-19 4 4 1.84MB 82 页 15积分
侵权投诉
摘 要
近年来高血压发病率呈上升趋势,造成了沉重的家庭和社会负担。食源性血
管紧张素转化酶(angiotensin I-converting enzyme,ACE)抑制肽可通过抑制生物体
ACE 活性起到良好的降压效果,但具体抑制机制尚不明确。定量构效关系
quantitative structure activity relationship,QSAR研究能提供分子结构与活性的定
量模型,对 ACE 抑制肽进行 QSAR 研究可为深入探讨 ACE 抑制肽的作用机制,
以及设计和开发高效降血压药物提供指导作用。
20 457
SVHEHS并运用两个经典肽库对其效果进行评价。58 ACE 抑制二肽的多元线
性回归multivariate linear regression,MLR)模型相关系数R20.936均方根
误差(RMSE0.259,交叉验证相关系数(Q2LOO)为 0.854,外部验证相关系
Q2ext0.737
48 个苦味二肽的 MLR 模型 R20.949
RMSE 0.136
Q2LOO
0.886Q2ext 0.543。与其他氨基酸描述符相比,SVHEHS 描述符建立的模型
在拟合能力、稳健性及预测能力上都更优,说明该描述符可用于对生物活性肽进
行定量构效关系研究。
利用 SVHEHS 描述符和 MLR 分别对自组建 ACE 抑制二、三、四肽进行 QSAR
研究。结果表明,二肽模型 R2=0.851RMSE=0.327Q2LOO=0.781Q2ext=0.792
C端氨基酸残基疏水性质及电荷性质和 N端氨基酸残基立体特征对 ACE 抑制二
肽的活性影响较大,特别是 C端氨基酸残基强的疏水性和弱的电荷性质对其活
有积极作用;三肽模型 R2=0.805RMSE=0.339Q2LOO=0.717Q2ext=0.817N
第一位氨基酸残基的疏水性、电性特征、立体特征及 C端氨基酸残基的疏水性、
电性特征对肽的活性影响较大,尤以第一位氨基酸残基疏水性影响较为显著;四
肽模型 R2=0.792RMSE=0.393Q2LOO=0.553Q2ext=0.630四肽从 N端开始第三
位氨基酸残基的氢键贡献和电性特征对 ACE 抑制四肽的活性影响较大,尤以第三
位氨基酸残基氢键贡献与活性呈显著负相关;对三种肽合集的建模结果为
R2=0.744RMSE=0.508Q2LOO=0.532Q2ext=0.567
利用 SVHEHS 描述符和偏最小二乘(partial least square regression,PLS)对自
ACE 抑制二、三、四肽进行 QSAR 研究。结果表明,二肽模型 R2=0.607
RMSE=0.587Q2LOO=0.507Q2ext=0.783C端氨基酸残基的疏水性、电性特征、
立体特征和 N端氨基酸残基的立体特征与肽活性相关性较大;三肽模型 R2=0.852
RMSE=0.232Q2LOO=0.813Q2ext=0.839N端氨基酸残基的疏水性、立体特征和
C端氨基酸残基的立体、电性特征对活性有显著影响;四肽模型 R2=1RMSE=0
Q2LOO=1Q2ext=0.935,从 N端开始第三位氨基酸残基的电性,第二位氨基酸残基
的立体特征,C端氨基酸残基的立体特征和 N端氨基酸的氢键贡献对肽活性影响
较大;对肽合集的建模结果为 R2=0.862RMSE=0.356Q2LOO=0.829Q2ext=0.632
利用 SVHEHS 描述符和人工神经网络artificial neural networks,ANN对自组
ACE QSAR R2=0.946
RMSE=0.249Q2LOO=0.951Q2ext=0.852NC端氨基酸残基立体特征对肽活性
影响显著;三肽模型 R2=0.973RMSE=0.135Q2LOO=0.945Q2ext=0.813,影响三
肽活性的主要因素为 N端氨基酸残基疏水性、立体特征和 C端氨基酸残基立体特
征等;四肽模型 R2=0.915RMSE=0.250Q2LOO=0.879Q2ext=0.814,影响四肽活
性的主要因素为 C端氨基酸残基立体特征、第二位氨基酸残基电性特征以及第
位氨基酸残基电性特征等;对肽合集的建模结果为:R2=0.958RMSE=0.224
Q2LOO=0.948Q2ext=0.634
最后,本文对 QSAR 建模的 3种算法优劣进行了比较,结果表明 MLR 能得到
明确的函数表达式,有利于解释和分析模型,但对变量正交性要求较严;PLS
小样本容量、多自变量个数且变量之间严重多重相关的肽库有很大优势,但拟合
能力稍差;ANN 能拟合非线性关系,快速逼近最佳样本数据规律,但无法获得明
确的函数关系式,且网络隐含层数和神经元节点个数没有确定规则,网络的学习
和记忆欠稳定。尽管 3种算法对自建肽库拟合能力有差异,但模型均能给出影
肽活性的共性结构特征。影响二肽活性的结构主要是 C端氨基酸残基的疏水性和
N端氨基酸残基的立体特征;影响三肽活性的结构主要是 N端氨基酸残基的疏水
性和立体特征;影响四肽活性的结构主要是第三位氨基酸的电性特征。将不同长
度肽融合在一个模型,能减少建模时间,为预测更多不同长度的肽活性提供便利。
关键词:血管紧张素转化酶抑制肽 定量构效关系 氨基酸描述符 主成
分分析 多元线性回归 偏最小二乘 人工神经网络
ABSTRACT
In recent years the incidence of hypertension has been rising, and it has resulted in
heavy burden on society and family. Angiotensin I-converting enzyme(ACE) inhibitory
peptide from food protein can inhibit ACE activity in vivo significantly,but the specific
mechanism is unclear.Quantitative structure activity relationship(QSAR) research is
useful to establish quantitative model between the molecular structure and activity.
QSAR research on ACE inhibitory peptide is helpful for looking into action mechanism
of ACE inhibitory peptide,and then guiding the design and development of effective
hypotensor.
SVHEHS descriptor was derived from 457 physicochemical properties indexes of
20 natural amino acids,and its performance was tested by 58 angiotensin I-converting
enzyme inhibitory dipeptides and 48 bitter taste dipeptides.The correlative coefficient
R2,root mean square error RMSE,the cross-validation correlative coefficient Q2LOO and
the external validation correlation coefficient Q2ext of two models were 0.936, 0.259,
0.854, 0.737; 0.949, 0.136, 0.886 and 0.543,respectively.Compared the above statistics
parameters of models with other models constructed by various descriptors,the fitting
ability,robustness and forecasting ability of SVHEHS were better.These showed that the
descriptor can be used for QSAR research.
SVHEHS descriptor and multiple linear regression algorithm were used to study
the QSAR of angiotensin I-converting enzyme inhibitory dipeptides,tripeptides and
tetrapeptides.The parameters R2, RMSE, Q2LOO, Q2ext of dipeptides model were 0.851,
0.327, 0.781 and 0.792,respectively.Hydrophobicity and charge of C-terminal amino
acid,and steric properties of N-terminal amino acid were closely related with its activity.
Hydrophobicity of C-terminal amino acid was most positively associated with the
activity,and charge of C-terminal amino acid most negatively with the activity.The
parameters R2, RMSE, Q2LOO, Q2ext of tripeptides model were 0.805, 0.339, 0.717 and
0.817,respectively.Hydrophobic,electronic and steric properties of N-terminal amino
acid,hydrophobic and electronic properties of C-terminal amino acid were closely
related with its activity,especially the hydrophobicity of N-terminal amino acid was
significant factor with positive effect.The parameters R2, RMSE, Q2LOO, Q2ext of
tetrapeptides model were 0.792, 0.393, 0.553 and 0.630,respectively.Hydrogen bonds
contributions and electrical characteristics of the third amino acid were closely related
with its activity,especially hydrogen bonds contributions was significant factor with
negative effect.The parameters R2, RMSE, Q2LOO, Q2ext of all of the peptides model were
0.744, 0.508, 0.532 and 0.567,respectively.
SVHEHS descriptor and partial least square algorithm were used to study the
QSAR of angiotensin I-converting enzyme inhibitory dipeptides, tripeptides and
tetrapeptides.The parameters R2, RMSE, Q2LOO, Q2ext of dipeptides model were 0.607,
0.587, 0.507 and 0.783,respectively.Hydrophobic,electronic and steric properties of
C-terminal amino acid,steric features of N-terminal amino acid were closely related
with its activity.The parameters R2, RMSE, Q2LOO, Q2ext of tripeptides model were 0.852,
0.232, 0.813 and 0.839,respectively.Hydrophobic and steric properties of N-terminal
amino acid, electronic and steric properties of C-terminal amino acid were closely
related with its activity.The parameters R2, RMSE, Q2LOO, Q2ext of tetrapeptides model
were 1, 0, 1 and 0.935,respectively.Electronic properties of the third amino acid,steric
properties of the second amino acid,steric properties of the C-terminal amino
acid,hydrogen bonds contributions of N-terminal amino acid were closely related with
its activity.The parameters R2, RMSE, Q2LOO, Q2ext of all of the peptides model were
0.862, 0.356, 0.829 and 0.632,respectively.
SVHEHS descriptor and artificial neural networks algorithm were used to study
the QSAR of angiotensin I-converting enzyme inhibitory dipeptides,tripeptides and
tetrapeptides.The parameters R2, RMSE, Q2LOO, Q2ext of dipeptides model were 0.946,
0.249, 0.951 and 0.852,respectively.Steric features of N-terminal amino acid and
C-terminal amino acid were closely related with its activity.The parameters R2, RMSE,
Q2LOO, Q2ext of tripeptides model were 0.973, 0.135, 0.945 and 0.813, respectively.
Hydrophobic and steric properties of N-terminal amino acid, steric properties of
C-terminal amino acid were closely related with its activity. The parameters R2, RMSE,
Q2LOO, Q2ext of tetrapeptides model were 0.915, 0.250, 0.879 and 0.814, respectively.
Steric features of C-terminal amino acid,electronic properties of the second amino acid,
electronic properties of the third amino acid were closely related with its activity. The
parameters R2, RMSE, Q2LOO, Q2ext of all of the peptides model were 0.958, 0.224,
0.948 and 0.634, respectively.
Finally,advantages and disadvantages of the three algorithms were compared.
Multiple linear regression can obtained clear function expressions, and be helpful for
model interpretation and analysis. However, its requirements of variable orthogonality
was strict. Partial least squares had great advantage to small samples with many
independent variables and serious related data, but it could not fit all of the database
well. Artificial neural network can fit nonlinear relation, and approach the best sample
data law quickly, but it had no explicit function equation. Moreover, there were
uncertain rules for the network layers and nodes, learning and memory of the network
were less stable than the former two algorithms. Although fitting abilities of three
algorithms to peptide library varied from each other, models drew the common structure
features which affect the peptides activities. Hydrophobicity and charge of C-terminal
amino acid,steric properties of N-terminal amino acid were more associated with
dipeptides activity. Hydrophobic and steric properties of N-terminal amino acid were
associated with tripeptides activity much. Charge of the third amino acid was associated
with tetrapeptides activity much.Models, which established by peptides with different
length, can make a prediction for the activities of different peptides in one model. Hence,
it can consume less time for modeling. This method can facilitate activities prediction of
different peptides when the impact factors on activities were clear.
Key Words angiotensin I-converting enzyme inhibitory peptides,
quantitative structure activity relationship,amino acid descriptor,
principal component analysis, multiple linear regression,partial least
square regression,artificial neural networks
目 录
中文摘要
ABSTRACT
第一章 绪 论........................................................................................................1
§1.1 血管紧张素转化酶(ACE)与高血压.....................................................1
§1.1.1 ACE 概述 ............................................................................................1
§1.1.2 ACE 在血压调节中的作用..................................................................1
§1.2 ACE 抑制剂.................................................................................................2
§1.3 定量构效关系(QSAR..........................................................................3
§1.3.1 二维定量构效关系(2D-QSAR).......................................................... 4
§1.3.2 三维定量构效关系(3D-QSAR).......................................................... 5
§1.3.3 QSAR 研究方法...................................................................................5
§1.4 ACE 抑制肽 QSAR 研究进展.................................................................... 8
§1.5 研究意义和内容.......................................................................................10
§1.5.1 研究意义............................................................................................10
§1.5.2 研究内容............................................................................................11
第二章 氨基酸描述符 SVHEHS 的建立与效果评价...................................... 12
§2.1 原理和方法...............................................................................................12
§2.1.1 SVHEHS 的建立................................................................................ 12
§2.1.2 SVHEHS 的效果评价........................................................................ 14
§2.2 结果与分析...............................................................................................14
§2.2.1 经典 ACE 抑制二肽库用于 SVHEHS 的评价................................ 14
§2.2.2 经典苦味二肽库用于 SVHEHS 的评价.......................................... 17
§2.3 结论...........................................................................................................19
第三章 MLR 用于 ACE 抑制肽 QSAR 研究................................................... 21
§3.1 原理和方法...............................................................................................21
§3.1.1 ACE 抑制肽肽库的建立....................................................................21
§3.1.2 SVHEHS 描述符用于肽结构表征.................................................... 21
§3.1.3 MLR 建模与模型检验.......................................................................21
§3.2 结果与分析...............................................................................................22
§3.2.1 ACE 抑制二肽的 QSAR 研究........................................................... 22
§3.2.2 ACE 抑制三肽的 QSAR 研究........................................................... 24
§3.2.3 ACE 抑制四肽的 QSAR 研究........................................................... 28
摘要:

摘要近年来高血压发病率呈上升趋势,造成了沉重的家庭和社会负担。食源性血管紧张素转化酶(angiotensinI-convertingenzyme,ACE)抑制肽可通过抑制生物体内ACE活性起到良好的降压效果,但具体抑制机制尚不明确。定量构效关系(quantitativestructureactivityrelationship,QSAR)研究能提供分子结构与活性的定量模型,对ACE抑制肽进行QSAR研究可为深入探讨ACE抑制肽的作用机制,以及设计和开发高效降血压药物提供指导作用。利用20种天然氨基酸的457种物化参数构建了新的氨基酸结构描述符SVHEHS,并运用两个经典肽库对其效果进行评价。5...

展开>> 收起<<
ACE抑制肽定量构效关系研究.pdf

共82页,预览9页

还剩页未读, 继续阅读

作者:侯斌 分类:高等教育资料 价格:15积分 属性:82 页 大小:1.84MB 格式:PDF 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 82
客服
关注