预制夹芯保温剪力墙抗震性能试验研

VIP免费
3.0 侯斌 2024-11-19 4 4 2.87MB 59 页 15积分
侵权投诉
众所周知,我国传统的住宅建筑中占绝大多数的是钢筋混凝土结构和钢筋混
凝土剪力墙结构。近几年来,党中央不断大力倡导加快转变经济发展方式,走新
型工业化发展道路方针政策,在党中央政策的引领下,建筑住宅行业也逐步开始
了对工业化住宅建造方式的探索。所谓"工业化住宅” 是指采用当前我们已经掌
握的科学技术,以现代化的、先进的、集中的大工业生产方式代替传统作业中那
种分散的、落后的手工业生产方式来建造住宅。而所谓的"工业生产方式”即通过
混凝土预制装配技术来实现住宅的建造,这是实现住宅产业化这一建筑住宅必然
趋势的唯一手段。
本文通过 L 型全预制夹芯保温剪力墙在低周反复荷载下的试验研究,对比分
析全预制夹芯保温剪力墙结构构件的受力变形过程、破坏形态等,并通过分析其
强度、变形等方面来判别全预制剪力墙的抗震性能。主要试验内容包括:设计制
作了 L 型全预制夹芯保温剪力墙 3 片(轴压比分别为 0.3、0.4、0.5)及相应尺寸
的全现浇型对比试件 1 片(轴压比为 0.5)。剪跨比均为 1.53。竖向钢筋采用的是
套筒浆锚连接技术,对每一片试验试件进行竖向轴向荷载和低周反复水平荷载加
载试验,通过试验数据进行分析不同轴压比下预制保温剪力墙墙体的破坏模式,
同时将预制剪力墙试件和相应轴压比作用下的现浇剪力墙试件对比,参照其现浇
剪力墙的破坏形式,研究可能的加强或改进措施。试验结果表明:
全预制夹芯保温剪力墙试块的破坏模式与现浇剪力墙的破坏模式基本相同:
都是试件底部靠近支座部分竖向边缘构件的钢筋受拉屈服,混凝土受压破坏甚至
溃落。墙体裂缝分布基本相同,两者均有大量不断贯通延伸的斜向裂缝,与支座
连接处有大量的水平裂缝集中,但稍有不同的是现浇墙出现了从墙顶贯通至墙底
的竖向裂缝,裂缝宽度很大。
在试验研究的基础上,通过利用有限元分析软件对不同轴压比的全预制夹芯
保温剪力墙进行非线性分析,同时与试验结果对比,得出与试验试块比较吻合的
模型,加载的方式也基于实际的试验操作过程,在实际试验操作中,是将预制夹
芯保温剪力墙试块的底端固定在底座上,通过在墙体顶端设置顶梁,用千斤顶在
顶梁上施加竖向荷载,在顶梁的一端施加水平荷载,从而推动整个试块。模拟时
模型的底面位移控制值为 O,竖向荷载是按照试验值换算成均布荷载加在模型顶面
上;水平方向按照位移控制施加往复荷载,位移施加在试件的上表面,这样与试验
中通过顶梁将荷载施加在墙体顶面较吻合。然后将模拟结果与试验结果对比,给
出相应的全预制剪力墙模拟方法及其建议。
关键词:全预制夹芯保温剪力墙 低周反复荷载 滞回曲线 强度退化
耗能能力 抗震性
ABSTRCT
As is known to all,the vast majority of the traditional residential buildings in our
country are reinforced concrete structure and reinforced concrete shear wall structure.In
recent years,along with speeding up the transformation of the pattern of economic
development and the implementation of the guidelines and policies of a new path of
industrialization development,housing industry also gradually began to explorate the
way of industrialization of residential construction ."Industrialised housing" refers to we
will build houses using modern means of science and technology advanced
concentrated and the large-scale industrial production mode instead of the past
backward handicraft production mode.The so-called "industrial production mode"
namely we would realize the residential building through concrete precast technology,it
is the only means of the realization of housing industrialization which is inevitable trend
of the building housing.
In this article,in order to distinguish the seismic performance of precast shear
wall there is test study through L-shaped section prefabricated sandwich insulation
shear wall under low reversed cyclic loading.All contents include the analysis of stress
deformation process failure pattern of total prefabricated sandwich insulation shear
wall structures,etcand the analysis of the strength and deformation for all aspects.The
main test contents include: There are 3 pieces total prefabricated sandwich insulation
shear wall which are designed the L-shaped (axial compression ratio is 0.3,0.4,
0.5,respectively) and the full cast-in-place type contrast specimen 1 slice (axial
compression ratio 0.5) which have the corresponding size.The shear span ratio of all
shear walls is 1.53.Socket pulp anchor bar connection is used in vertical,then we will
test every experimental model through the vertical axial load and horizontal cyclic
loading .We can realize the failure mode through analyzing test data of different types of
prefabricated wall.and at the same timewe can research strengthen or improvement
measures by comparing the action of cast-in-place shear wall in the corresponding axial
compression ratio and reference to the destruction form of cast-in-place shear wall.The
experimental results are showed that:
The failure mode of total prefabricated sandwich insulation block shear wall and
cast-in-place shear wall are basically the same: the reinforced of vertical edges yield
because of tensile,concrete damage or collapse because of compression.The distribution
of crack are basically the same both are large and well versed in oblique crack
extension,there are a large number of horizontal crack focus on pedestal,but slightly
different is where cast-in-situ wall appeared connecting crack from the wall penetration
to the bottom of the vertical wall,the width of crackis very big.
On the basis of experimental study,the article will analyze nonlinear shear wall by using
the finite element analysis software to different axial compression ratio of total
prefabricated sandwich insulation shear wall ,at the same time compared with the test
results.The model must tallies well with the test block of the model,the test is based on
the actual loading process, in the actual experiment,the bottom of the prefabricated
shear wall is fixed in the base,through setting top beam at the top,applying vertical load
on the roof beam with a jack and applying the horizontal load at one end of the top
beam,so as to promote the whole block.Simulation the surface displacement of bottom
of model is controled in 0,vertical load is converted to uniformly distributed load on the
model on the ceiling in accordance with the test value;According to horizontal
displacement control reciprocating loading,the displacement is applying on the
specimen surface,so it is matched with the experiment through applying load at the top
of the wall.Then comparing with the test results,we will give the corresponding
simulation method and the suggestion of total prefabricated shear wall.
Key Words: Total prefabricated sandwich insulation shear wallLow
reversed cyclic loadingHysteresis curveStrength degradation
Energy dissipationSeismic performance

中文摘要
ABSTRACT
第一章 绪论 .......................................................... 1
1.1 课题的来源与意义 ............................................... 1
1.2 文献评述 ....................................................... 3
1.2.1 国外预制剪力墙的研究 ....................................... 3
1.2.2 国内预制剪力墙的研究现状 ................................... 4
1.2.2.1 国内预制剪力墙学术研究现状 ............................. 4
1.2.2.2 国内预制剪力墙应用现状 ................................. 5
1.2.3 钢筋套筒灌浆连接技术的发展历史 ............................. 7
1.3 预制剪力墙的特点 ............................................... 9
1.3.1 预制装配式剪力墙的分类及特点 ............................... 9
1.3.2 阻碍预制装配式剪力墙推广的原因 ............................ 10
1.4 本文研究的主要内容 ............................................ 11
第二章 实验方案设计与制作 ........................................... 12
2.1 试验概述 ...................................................... 12
2.1.1 试件设计 .................................................. 12
2.1.1.1 轴压比 ................................................ 12
2.1.1.2 剪跨比 ............................................... 12
2.1.1.3 试件尺寸及配筋 ........................................ 13
2.1.1.4 各墙片类型以及示意图 ................................... 14
2.2 材料强度 ...................................................... 16
2.3 试验加载制度 .................................................. 16
2.3.1 试验场所设施条件 ........................................ 16
2.3.2 加载制度 ................................................ 17
2.4 试验测试内容及测点布置 ........................................ 18
2.4.1 试验测试内容 ............................................... 18
2.4.2 试验测试内容相应测点布置 ................................... 19
2.4.2.1 加载荷载、控制位移及相应裂缝记录 ...................... 19
2.4.2.2 剪力墙位移通过位移计记录 .............................. 19
2.4.2.3 钢筋应变通过布置应变计记录 ............................ 22
2.5 本章小结 ...................................................... 23
第三章 试件破坏与结果分析 ........................................... 24
3.1 试验破坏过程 ................................................... 24
3.1.1 试件 YZ-1 .................................................. 24
3.1.2 试件 YZ-2 .................................................. 25
3.1.3 试件 YZ-3 .................................................. 27
3.1.4 试件 XJ-1 .................................................. 28
3.2 试验结果分析 .................................................. 31
3.2.1 荷载-位移滞回曲线 .......................................... 31
3.2.2 骨架曲线 .................................................. 33
3.2.3 耗能能力 ................................................... 34
3.3 本章小结 ...................................................... 35
第四章 非线性有限元数值分析 ......................................... 36
4.1 有限元分析软件概述 ............................................ 36
4.2 材料的本构关系 ................................................ 36
4.2.1 混凝土的本构关系 ........................................... 37
4.2.2 钢筋的本构关系 ............................................. 39
4.3 建立模型 ...................................................... 39
4.4 施加约束条件和荷载 ............................................ 42
4.5 模拟结果与试验结果对比 ........................................ 42
4.5.1 应力图对比 ................................................ 42
4.5.2 变形能力分析 ............................................. 45
4.5.2.1 承载力和刚度分析 ...................................... 45
4.5.2.2 变形分析 .............................................. 46
4.6 本章小结 ...................................................... 46
第五章 结论与展望 ................................................... 48
5.1 研究结论 ...................................................... 48
5.2 研究展望 ...................................................... 49
参考文献 ............................................................ 50
在读期间公开发表的论文和承担科研项目及取得成果 ...................... 54
致谢 ................................................................ 55
摘要:

  摘要众所周知,我国传统的住宅建筑中占绝大多数的是钢筋混凝土结构和钢筋混凝土剪力墙结构。近几年来,党中央不断大力倡导加快转变经济发展方式,走新型工业化发展道路方针政策,在党中央政策的引领下,建筑住宅行业也逐步开始了对工业化住宅建造方式的探索。所谓"工业化住宅”是指采用当前我们已经掌握的科学技术,以现代化的、先进的、集中的大工业生产方式代替传统作业中那种分散的、落后的手工业生产方式来建造住宅。而所谓的"工业生产方式”即通过混凝土预制装配技术来实现住宅的建造,这是实现住宅产业化这一建筑住宅必然趋势的唯一手段。本文通过L型全预制夹芯保温剪力墙在低周反复荷载下的试验研究,对比分析全预制夹芯保温剪力墙...

展开>> 收起<<
预制夹芯保温剪力墙抗震性能试验研.pdf

共59页,预览6页

还剩页未读, 继续阅读

作者:侯斌 分类:高等教育资料 价格:15积分 属性:59 页 大小:2.87MB 格式:PDF 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 59
客服
关注