基于贝叶斯方法的砌体材料损伤识别

VIP免费
3.0 侯斌 2024-11-19 4 4 3.29MB 87 页 15积分
侵权投诉
砌体结是一种历史悠久建筑结形式在长期的使用过程中环境侵蚀
自身老化自然因素联合用,将导其材料伤累件和
载能力的检方法特性,进识别材料损伤情况
研究热点
弹性模量体结重要砌体结损伤识别研究
础参数。为通方法重要数,先通砌体件进行
环境激励与人工激励动力测试砌体件的频率,并验证环境激励识
砌体频率的可行此基础上,采用马尔科夫蒙特卡洛( Markov
Chain Monte Carlo, MCMC)抽样贝叶斯方法得砌体频率后验概
,作为基频率估计据。据有限元量与基
的关反算环境激励下砌体件的模量,并力实模量进行
比验证
环境激励6损砌体件的弹性模量,作损伤限元模型
弹性模量计算元模型始频率模拟砌体同位
砖与砂浆损伤应变价原伤因与基频率的关计算
伤砌体件的损伤因。以损伤因折减损砌体件有限元模型弹性模量
限元模型进行,分别获取不限元模模态频率
MCMC 抽样贝叶斯方法得频率后验概率损伤砌体实测频
概率识别砌体件的损伤,并将方法用于历史建筑
损伤识别研究
对一建筑沿东西南北向进行多次环境激励动力测试
傅里叶变Fast Fourier Transform, FFT)与窗函动力测试加速
数据,取历史建筑频率数据,MCMC 抽样频率后验概率
结合模型计算史建筑伤因子,伤因频率
判断历史筑是损伤产生。以三次频率概率
历史建筑频率初始时监建筑动态方法识别结果
可以多次测试、有历史建筑
关键:贝叶斯方法 环境激励 基本频率 损伤识别 历史建筑
ABSTRACT
Masonry structure is one of the structural forms of buildings with a time-honored
history. The combined effects such as environmental erosion, self-aging and factor of
natural disasters result in the materials damage accumulation and decline of carrying
ability of structural member over the long period being used. Getting dynamic
characteristics through nondestructive detection method, and then identify the damage
of materials is a hot research at present.
Modulus of elasticity is not only an important indicator of the safety of masonry
structures, but also the basic parameters to identify the damage of masonry structures
and the finite element analysis. To obtain this important parameter by nondestructive
method, first, the dynamic test should be made on the masonry specimens under the
environmental incentives and artificial incentives. Then the basic frequency of masonry
specimens can be obtained, and the feasibility of identification basic frequency with
environmental incentives will be verified. On this basis, the posterior probability density
distribution of basic frequency of masonry specimens can be obtained based on the
Markov chain Monte Carlo (MCMC) sampling Bayesian methods, as the basis of the
basic frequency estimation. After that, the elastic modulus of masonry specimen can be
calculated depending on the relationship of the elastic modulus of finite element and the
basic frequency, then compare the result with static test.
The mean elastic modulus of the six masonry specimens under environmental
incentives can be regarded as the initial modulus of elasticity of damage finite
element model, and then calculate the basic frequency of the damage finite element
model. The damage of brick and mortar of the masonry specimens can be simulated
by plastic foam. According to the relationship between damage factor and basic
frequency derived by equivalent strain principle, the damage factor of damage
masonry specimen can be calculated. Using the damage factor discount the elastic
modulus of damage masonry specimens and divide the finite element model, the basic
frequency under different finite element model can be obtained with the modal
analysis. Then the posterior probability density distribution of the basic frequency can
be gained by MCMC sampling based on Bayesian method. Comparing with the
probability density distribution of measured frequency, the location of masonry
specimen can be identified, and the method can be used to identify the damage of
historic buildings.
The dynamic test based on ambient excitation can be carried many times on a
century-old building along the east-west and north-south direction. Using the Fast
Fourier Transform (FFT) and the window function to process the testing data, the
frequency of historical building can be obtained, and then calculate the probability
density distribution of frequency by MCMC sampling. The damage factor of
historical building can be calculated through combining the finite element, and then
compare the rate of change of damage factor and frequency to determine whether
there is damage on the historical buildings. The mean of the posterior probability
density distribution of three previous testing frequencies can be regarded as the initial
frequency of historical building, and monitor historical building real-time. The results
obtained by this method are unique, and also can be conducted repeatedly, to achieve
long-term monitoring of historical buildings in an economic and efficient way.
Key Word: Bayesian method, ambient excitation, basic frequency,
damage identification, historical building
摘要
ABSTRACT
................................................................................................................1
1.1 ...................................................................................................................1
1.2 损伤识别 ...................................................................................................2
1.2.1 动力测试方法 ....................................................................................2
1.2.2 测试数据............................................................................................3
1.2.3 贝叶斯方法损伤识别 ....................................................................4
1.3 本文研究内容 ...................................................................................................5
第二章 砌体材料性能实验 ............................................................................6
2.1 抗压强度实验数据 .......................................................................................6
2.1.1 砖试件制方法 ........................................................................................6
2.1.2 实验结果............................................................................................7
2.2 砂浆立方体抗压强度实验 ...............................................................................9
2.2.1 砂浆立方体件制作 ................................................................................9
2.2.2 砂浆立方体实验结果......................................................................10
2.3 砌体抗压强度实验数据 ..........................................................................11
2.3.1 砌体件制作 ...........................................................................................11
2.3.2 砌体静力实验 ..................................................................................12
2.3.3 砌体弹性模量计算 ..........................................................................14
第三章 环境激励砌体动力测试 ..........................................................18
3.1 砌体件有限元.....................................................................................18
3.1.1 砌体件有限元模型 ..............................................................................18
3.1.2 限元模型......................................................................................18
3.2 砌体件的动力测试 .....................................................................................21
3.2.1 动力测试设备 ..........................................................................................21
3.2.2 测点布置 ..................................................................................................21
3.2.3 动力测试信号..................................................................................23
3.3 动力测试数据.........................................................................................24
3.3.1 傅里叶变窗函..............................................................................24
3.3.2 动力测试数据..................................................................................27
3.4 砌体频率推.................................................................................31
3.4.1 贝叶斯推过程 ..........................................................................31
3.4.2 频率后验概率..............................................................32
第四章 贝叶斯方法砌体损伤识别 ......................................................37
4.1 环境激励砌体弹性模量识别 .............................................................37
4.1.1 损砌体弹性模量识别 ..................................................................37
4.1.2 损砌体弹性模量识别 ..................................................................40
4.2 损伤砌体损伤因计算 .........................................................................44
4.3 砌体损伤识别 .........................................................................................46
第五章 历史建筑频率识别及..........................................................................53
5.1 概况 .........................................................................................................53
5.2 限元模型 .....................................................................................................55
5.3 历史建筑动力测试 .........................................................................................58
5.3.1 测点布置 ..................................................................................................58
5.3.2 动力测试设备 ..........................................................................................59
5.3.3 动力测试数据..................................................................................59
5.4 历史建筑损伤识别 .........................................................................................64
5.4.1 频率后验概率......................................................................64
5.4.2 历史建筑损伤识别 ..................................................................................67
5.4.3 历史建筑健康监..................................................................................68
第六章 展望 ..................................................................................................71
6.1 .................................................................................................................71
6.2 展望 .................................................................................................................71
附图 ............................................................................................................................73
....................................................................................................................80
公开发表的论文和承担项目取得........................................83
............................................................................................................................85
1
第一章 绪论
1.1 引言
砌体结原始筑结构,国的体结在历史熠生
举世闻名的万里两千的文明史隋朝
北赵县赵州桥世界最早空腹拱桥体结构,如图 1-1
(a) 万里 (b) 州桥
1-1 砌体结
国成砌体结全国90%左右基础
采用砌体体材料[1]建筑特别住宅建筑中广泛采用砌体承重
建筑中普遍砌体承重体结砌筑方法样性形式
服役周围环境作用,使
构或者构件产生损伤这些因素使得结构的
对其进行性能困难
弹性模量体结构的性能重要,同
是砌体构件性能一个数。
估算砌体结模量都会造计算结果弹性量值
砌体结的有限元与计算非常重要的。课题旨环境激励动力
测试方法取砌体件的频率结合元计算砌体件的模量,并以
此弹性模量限元数进行砌体件的损伤识别
构的数可分静力参数和力参数,分别通测试方法动力
摘要:

摘要砌体结构是一种历史悠久的建筑结构形式。在长期的使用过程中,环境侵蚀、自身老化、自然灾害因素等联合作用,将导致其材料的损伤累积、构件和结构承载能力下降。通过无损的检测方法获取动力特性,进而识别材料的损伤情况是当前研究的热点。弹性模量是砌体结构安全性的重要指标,也是砌体结构损伤识别研究及有限元分析的基础参数。为通过无损方法获得此重要参数,首先通过对砌体试件进行环境激励与人工激励的动力测试,获取砌体试件的基本频率,并验证环境激励识别砌体试件基本频率的可行性。在此基础上,通过采用马尔科夫蒙特卡洛(MarkovChainMonteCarlo,MCMC)抽样的贝叶斯方法,获得砌体试件基本频率的后验概率...

展开>> 收起<<
基于贝叶斯方法的砌体材料损伤识别.pdf

共87页,预览9页

还剩页未读, 继续阅读

作者:侯斌 分类:高等教育资料 价格:15积分 属性:87 页 大小:3.29MB 格式:PDF 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 87
客服
关注