HVAC实验系统的搭建与仿真研究

VIP免费
3.0 侯斌 2024-11-19 4 4 3.49MB 75 页 15积分
侵权投诉
6
在当前的空调系统中,直膨式空调机组系统简单,性能稳定、安装方便、调
节范围等特点具有良好的实际应用,可与变风量系统相结合,能更好的起到节约
能耗的效果,但是相应的由于其控制的复杂性较高,且各控制回路之前存在较大
的耦合关系,尤其是过热度以及压缩机频率的控制,恰当地使用优良的控制逻辑
可以确保空调系统的运行。搭建直膨式变风量系统的实验系统能够对系统中各个
控制回路以及参数变量进行独立或者耦合的研究,而建立的各个部件以及总体的
模型能够进行稳态和准稳态仿真模拟,可以预测某一工况下系统稳定运行时的性
能,利用预测的结果可对该系统进行优化,具有广泛的科研以及工程意义。
论文聚焦于直膨式变风量空调机组多功能实验台的搭建,设计并搭建了一套
能够满足科学研究以及工程实际的实验系统。综合运用了控制技术,数据采集技
术和通讯技术,采用了理论建模,模型优化和现场优化控制构造和实测实验等研
究方法。完成了控制网络以及数据采集网络的构建,并通过通讯接口将其与上位
机之间对接,完成之间的数据交换。编制了人工控制和监测界面,并在主实验操
作平台的基础上搭建了室内模拟热湿负荷调试子平台,形成了人机交互式的操作
系统界面。并预留可二次开发的模块以供验证不同控制回路的控制逻辑或者研究
相互之间的耦合作用。经过现场的调试使得实验系统在不同的工况要求下稳定良
好的运行,并确保各测点数据的准确性。其中,理论上分析并建立直接膨胀式制
冷系统和 VAV 风系统主要部件的数学模型,其中变频压缩机和变频风机均采用了
图形建模的方法,具有较高的精度。将各部件模型通过方程,编制合适的算法程
序,构建了系统稳态仿真模型。
建造了可移动式的室内热湿负荷发生器,并利用占空比控制方法对其进行控
制,使其功率按照实验要求进行逐时的变化以模拟实际房屋建筑建筑中的负荷变
化。设计并且实现了利用负荷发生追踪系统性能的实验方法,得到了在该套系统
在不同压缩机频率和不同风机转速下的总制冷量和显热占的总热比值,在变频风
机频率一定的时候,随着压缩机频率的增大,总的制冷量呈上升趋势,但是显热
负荷占总制冷量的比值减小;而压缩机频率一定的时候,随着风量的增大,总的
制冷量呈上升趋势,且显热负荷占总制冷量的比值增大。将其与稳态仿真模型的
实验结果进行对比,并根据现场的参数和实测的结果对部分模型进行优化,以达
到更高的精度。
本文建立直膨式变风量实验系统,建造相关理论模型,架起了理论研究与实
际应用之间的桥梁,为不同的实验研究服务,为空调系统发展和城市建设服务,
具有重要的科学意义。
关键词:直膨式制冷 变风量 控制逻辑 数据采集 仪器通讯 理论建模
实验研究
8
ABSTRACT
Currently, air-conditioning system using direct expansion type is simple, stable,
assembly-convenient, and its setting range is wide. Consequently, it has been put into
practical application well. Additionally, it can combine with VAV system, reducing
more energy consumption. But due to its high complexity in controlling, and the large
coupling relationship before each control loop, especially for the degree of superheat
and compressor frequency controlling. Properly using control logic can ensure the
operation of air conditioning system. The experimental system of direct expansion type
variable air volume system can be used in testing each control loop variables and
parameters in the system independently or coupling. The parts as well as the overall
model can imitate the steady state and quasi steady state simulation, so we can predict
the performance when a system is under the condition of stable operation. It has a wide
range of scientific researching and engineering significance.
This paper is focusing on the construction of the testing system of direct expansion
air conditioning with variable air volume. We designed and built a set of experimental
system which can satisfy the need of scientific research and engineering practice. Using
the control technology, data acquisition technology and communication technology, and
taking the method of the theory of modeling, model optimization and the optimization
control structure and the measuring ,we completed the constructing of the controlling
network and data collection network.
Initially we compiled the manual control and monitoring interface, and the main
experimental operation platform, built on the basis of simulation indoor thermal and
moisture load debugging platform. Then we reserved module for validation of the
secondary development of different control loop of the control logic or research the
coupling effect with each other. Finally ,we formed a man-machine interactive operating
system interface. After the scene debugging, which makes experiment system run stably
under different working condition .And we make sure that the measuring point data is
accurate. Establishing the theoretical mathematic model of the main parts of the system.
We built the portable generators, indoor thermal and moisture load and use the duty
ratio control method to control them, rendering its power vary in minutes to simulate the
actual load changing in housing .We designed a method that using the produced load to
track the performance of system and made it run. Then we got the conclusion that under
the certain frequency of the air fan, the total refrigerating capacity is rising with the
increase of the frequency of compressor, while the percentage of the sensible heat is
decreasing. Under the certain frequency of compressor, the total refrigerating capacity is
rising with the increase of the frequency of compressor, while the percentage of the
sensible heat is rising too. Comparing the result of the steady state simulation model
with that of the experiment, we conclude that the model is relatively accurate.
Establishing the direct expansion type air conditioning system with variable air
volume and constructing the relevant theoretical model can set up a bridge between
theoretical research and practical application, serve for different experimental research,
the development of air conditioning system and urban construction, which is very
significant.
Keyword: direct expansion refrigeration, variable air volume, control logics , data
acquisition, instruments communication, theory-model, experimental
research
10
中文摘要
ABSTRACT
第一章 ........................................................................................................... 1
1.1 研究背景 ........................................................................................................ 2
1.2 国内外研究现状 ............................................................................................ 2
1.2.1 变风量直膨式空调机组的研究现状 ................................................... 2
1.2.2 系统仿真模拟现状 ............................................................................... 5
1.3 论文主要研究内容及意义 ............................................................................ 6
第二章 HVAC 实验系统的设计与搭建 ................................................................. 7
2.1 实验系统原理 .............................................................................................. 7
2.1.1 直膨式制冷系统原理 ............................................................................. 7
2.1.2 系统原理 ............................................................................................... 9
2.2 控制系统原理 .............................................................................................. 11
2.2.1 PID 控制算法 ......................................................................................... 12
2.2.2 单回路控制系统 ................................................................................... 15
2.2.3 VAV 风系统的串级控制平台的建立 .................................................... 16
2.2.4 本试验系统的控制网络构建 ............................................................... 17
2.3 控制系统原理及构建 .................................................................................. 19
2.3.1 数据采集仪及测点布置 ....................................................................... 19
2.3.2 传感器及测量装置 ............................................................................. 21
2.4 实验关键部件及工控界面 .......................................................................... 23
2.4.1 系统关键部件 ..................................................................................... 23
2.4.2 上位机监测控制界面 ......................................................................... 25
2.5 本章小结 ...................................................................................................... 26
第三章 热湿负荷发生系统原理和构建 ............................................................... 28
3.1 热湿负荷发生器 .......................................................................................... 28
3.2 模拟负荷发生器控制原理及功率采集 ...................................................... 29
3.3 跟随负荷变化控制法 .................................................................................. 30
3.3.1 模拟负荷调试平台 ............................................................................... 31
3.3.2 积分功率采集 ....................................................................................... 31
3.4 本章小结 ...................................................................................................... 33
第四章 实验系统的数学模型 ............................................................................... 34
4.1 Labview 交互式控制与仿真 ........................................................................ 34
4.2 制冷系统的数学模型 .................................................................................. 35
4.2.1 物性参数的程序化 ............................................................................... 35
4.2.2 气冷器的数学模型 ............................................................................... 36
4.2.3 蒸发器的数学模型 ............................................................................... 41
4.2.4 变频压缩机的数学模型 ....................................................................... 47
4.2.5 电子膨胀阀的数学模型 ....................................................................... 48
4.3 风系统的数学模型 ...................................................................................... 49
4.3.1 回风新风混合数学模型 ....................................................................... 49
4.3.2 风道系统的数学模型 ........................................................................... 49
4.3.3 变频风机的数学模型 ........................................................................... 50
4.4 末端装置的数学模型 .................................................................................. 50
4.4.1 传感器 ................................................................................................... 50
4.4.2 风阀执行机构模型 ............................................................................... 51
4.4.3 PID 控制器模型 ..................................................................................... 51
4.5 实验房间的数学模型 .................................................................................. 52
4.5.1 空调房间温度数学模型 ....................................................................... 52
4.5.2 空调房间湿度数学模型 ....................................................................... 53
4.6 交互式方正系统的构建 .............................................................................. 53
4.6.1 空调房间温度数学模型 ....................................................................... 52
4.6.2 空调房间湿度数学模型 ....................................................................... 54
4.7 本章小结 ...................................................................................................... 55
第五章 系统实验研究以及与模型的对比 ........................................................... 56
5.1 实验介绍 ...................................................................................................... 56
5.1.1 实验目的 ............................................................................................... 56
5.1.2 实验方法和内容 ................................................................................... 56
5.2 房间温湿度控制结果 .................................................................................. 56
5.3 压缩机频率一定,风量变化的实验及仿真结果 ...................................... 58
5.4 风量一定,压缩机频率的实验及仿真结果 .............................................. 60
5.5 实验系统性能分析 ...................................................................................... 62
5.6 本章小结 ...................................................................................................... 62
第六章 结论与展望 ............................................................................................... 64
6.1 主要结论 ...................................................................................................... 64
摘要:

6摘要在当前的空调系统中,直膨式空调机组系统简单,性能稳定、安装方便、调节范围等特点具有良好的实际应用,可与变风量系统相结合,能更好的起到节约能耗的效果,但是相应的由于其控制的复杂性较高,且各控制回路之前存在较大的耦合关系,尤其是过热度以及压缩机频率的控制,恰当地使用优良的控制逻辑可以确保空调系统的运行。搭建直膨式变风量系统的实验系统能够对系统中各个控制回路以及参数变量进行独立或者耦合的研究,而建立的各个部件以及总体的模型能够进行稳态和准稳态仿真模拟,可以预测某一工况下系统稳定运行时的性能,利用预测的结果可对该系统进行优化,具有广泛的科研以及工程意义。论文聚焦于直膨式变风量空调机组多功能实验台...

展开>> 收起<<
HVAC实验系统的搭建与仿真研究.pdf

共75页,预览8页

还剩页未读, 继续阅读

作者:侯斌 分类:高等教育资料 价格:15积分 属性:75 页 大小:3.49MB 格式:PDF 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 75
客服
关注