填充粒子对电化学除氨氮影响机制研究

VIP免费
3.0 侯斌 2024-11-19 4 4 1.14MB 70 页 15积分
侵权投诉
填充粒子对电化学除氨氮影响
机制研究
摘 要
随着人口增长以及社会经济的快速发展,氨氮排放量日趋增加。 2013 年国家
环境质量公报公布氨氮的排放量经达245.7 万吨/。氨氮作为一水体中常
见的污染物,其硝化过程消耗水体中溶解氧为 4.6 g O2/g NH3。研究表明,在水
养殖过程中,氨对鱼类有一定的害作用。此外作为一种营养元素,氨氮能
进天然水体中藻类的生长与繁殖造成水体的富养化,严重时会形成“水华
或者“赤潮”。
在现有氨氮的处理技术中,生物以其处理水量、成本低等优点占据主
地位。但是该工艺对温度敏感,季低温条件下不能达到预期效果。此外,
业废水中某些有毒有机物会影响生物的硝化过,造成出水中氨氮超标。随
国标对氨氮排放要求越来越严格电化学法以其水氨氮浓度低、不受温度影
有毒物质影响小、无剩余污泥、于自动化控制主产物氮气环境友好等优点
到研究者的广泛关注。本文在二电极电化学氧法深度去除水中氨氮基础之
选取RuO2/Ti 为阴阳两氮机理与
率的影响,在间歇流与连续流两模式下探讨了性与非极性两类填充粒子对
艺过程的影响。
研究结果表明,在间歇流模式下,32.0 mg N/L 氨氮在 300 mg/L 氯离子及中
性条件下,经过 2.0 A 电流电解 2.5 h 后下降到 1.3 mg N/L。同等条件下,填充活
30.0 mg N/L 氨氮2.0 h 电解0.3 mg N/L
0.004 mg N/L5.1
mg N/L,总氮为 6.8 mg N/L产物以气氮为主。单因实验结果表明高氯离子
浓度和电流对氨氮去除有利,pH 值对工艺影响比较小。实际废水的处理结果表明,
28.0 mg N/L 氨氮在 300 mg/L 氯离子、2.0 A 电流及中性 pH 值下,经过 2.5 h 电解
后下降至 0.3 mg N/L,同时总氮从 31.5 mg N/L 下降至 6.1 mg N/L,去除率为
80%,可以达到城镇污水排放标准(GB 18918-2002)一A的要求。
,同等间歇流条件下,填充蛭石后,30.0 mg N/L 氨氮经过 1.75 h 电解后
可下降至 0.1 mg N/L,氨氮平均去除速率比填充活性炭高。产物分析结果表明
亚硝酸盐为 0.008 mg N/L,硝酸盐为 3.5 mg N/L,总氮为 8.9 mg N/L,产物以气
态氮为主。高氯离子浓度和电流对氨氮去除有利,pH 值对工艺影响比较小。实际
30.0 mg N/L 2.0 h 电解0.3 mg N/L
时总氮从 32.2 mg N/L 下降至 6.3 mg N/L,去除率为 81%,同等条件下氨氮和总氮
去除率均比填充活性炭高。
者,在连续流模式下,24.4 mg N/L 氨氮在 300 mg/L 氯离子、水力停留
10.0 min 及中性条件下,经过 2.0 A 电流电解后出水浓度定在 8.9 mg N/L,氨
氮去除率为 64%。同等条件下填充活性炭后,30.0 mg N/L 氨氮电解后出水浓度为
1.4 mg N/L除率比二31%。产物分
0.004 mg N/L,硝酸盐为 3.2 mg N/L,总氮为 7.4 mg N/L,产物以气态氮为主。单
因素实验结果表明,增加水力停留时间、氯离子浓度和电流有利于氨氮的去除
pH 值对28.0 mg N/L 氨氮300
mg/L 氯离子、2.0 A 电流及中性 pH 值条件下,经同力停留时间电解后出水氨
0 mg N/L 31.5 mg N/L 3.5 mg N/L
89%,可以达到城镇污水排放标准(GB8978-1996)一A的要求。
后研究了同等连续流条件下,填充蛭石对电化学除氨氮过程影响。30.0 mg
N/L 氨氮在水力停留时间为 6.0 min 条件下电解出水浓度为 3.4 mg N/L,达到
处理时间比填充活性炭要低 40%。产物分析结果表明,亚硝酸盐为
0.004 mg N/L硝酸盐为 4.4 mg N/L11.2 mg N/L物以气态
单因素实验结果表明,增加停留时间、氯子浓度和流有利于氨氮的去
pH 值对30.0 mg N/L 氨氮300
mg/L 氯离子、2.0 A 电流及中性 pH 值条件下,经水力停留6.0 min 电解后出
水氨氮浓度为 4.6 mg N/L同时总氮从 31.3 mg N/L 下降8.9 mg N/L,去除率为
72%,达到相似效果所需处理时间比填充活性炭要低 40%
研究结果表明,在间歇流和连续两种模式下,化学法均以深度去
水体中的氨氮合适条件下出水浓度达到 1 mg N/L 下。填充活性炭与蛭石两种
粒子可以有效的增化学除氨的速率,石要优于非极
活性炭,达到效果更短可能蛭石氨氮
吸附有效长了氮在反应停留间,氮与电生成活
种(活性)的反应加快了氨的去除速率。实际废水在间歇流连续
流两种模式下,经过活性炭/蛭石填充电解反应器解后均可以达到城镇污水排
标准一A的要求。氨氮去除速率要可能是于实际废水中的有
机物或还原性物质引起的。
键词:氨氮 电解 活性炭 蛭石
ABSTRACT
With the rapid growth of population and development of social economy, the
discharge of ammonia is increasing year by year. According to the Chinese
Environmental Quality Bulletin in 2013, the ammonia emission has reached 2,457,000
tons per year. As a common contaminant, the nitrification of ammonia consumes 4.6 g
O2/g NH3 by microorganisms in natural water. Many research shows that ammonia has a
toxic effect on fish in aquaculture industry. Moreover, as a nutrient, ammonia can
promote the growth and propagation of algae, leading to the eutrophication of natural
water bodies. Green or red tide will form in serious situation.
Among all the ammonia removal techniques, biological treatment plays an
important role due to merits such as high treatment capacity, low cost etc. However,
biological process is usually sensitive to temperature, and thus cannot reach the desired
results under cold temperature in winter. Moreover, the toxic components in industrial
wastewater can affect the nitrification process, which leads to the exceeding of
ammonia in the effluent. Since the discharge standard for ammonia is becoming more
and more strict in wastewater, electrochemical method has attracted more and more
attention due to its low ammonia concentration in effluent, less sensitive to temperature
and toxic components, no extra sludge, easy automatic control and environmental
friendly product of nitrogen. Based on previous research on electrolytic removal of
ammonia by conventional two-dimensional electrolysis reactor, this research focused on
the enhanced ammonia removal by using stainless steel as cathode, RuO2/Ti as anode
and activated carbon/vermiculite as packing particle under batch or continuous mode.
Research results showed that under batch mode and neutral pH, 32.0 mg N/L
ammonia with 300 mg/L chloride decreased to 1.3 mg N/L after 2.5 h electrolysis at 2.0
A current. After packing with activated carbon, 30.0 mg N/L can decrease to 0.3 mg
N/L after 2.0 h electrolysis under similar conditions, resulting in a higher ammonia
removal rate. Product analysis revealed that, nitrite, nitrate and total nitrogen were
0.004, 5.1, and 6.8 mg N/L, respectively, which indicated that ammonia was mainly
converted to gaseous nitrogen. High chloride concentration and current were beneficial
for ammonia removal, while pH had little impact by using single factor test. Treatment
of actual wastewater showed that, 28.0 mg N/L ammonia can be reduced to 0.3 mg N/L
after 2.5 h electrolysis under the conditions of 300 mg/L chloride, 2.0 A current and
neutral pH. Total nitrogen decreased from 31.5 mg N/L to 6.1 mg N/L, which can reach
the level 1 grade A discharge standard of municipal wastewater.
Similarly, when packing with vermiculite, 30.0 mg N/L can decrease to 0.1 mg
N/L after 1.75 h electrolysis under similar conditions, resulting in a higher ammonia
removal rate than packing with activated carbon. Product analysis revealed that, nitrite,
nitrate and total nitrogen were 0.008, 3.5, and 8.9 mg N/L, respectively, which indicated
that ammonia was mainly converted to gaseous nitrogen. High chloride concentration
and current were beneficial for ammonia removal, while pH had little impact by using
single factor test. Treatment of actual wastewater showed that, 30.0 mg N/L ammonia
can be reduced to 0.3 mg N/L after 2.0 h electrolysis under the conditions of 300 mg/L
chloride, 2.0 A current and neutral pH. Total nitrogen decreased from 32.2 mg N/L to
6.3 mg N/L. Enhanced removal of both ammonia and total nitrogen was observed than
packing with activated carbon.
Under continuous mode with 300 mg/L chloride, 24.4 mg N/L ammonia can be
reduced to 8.9 mg N/L at a current of 2.0 A and hydraulic retention time of 10.0 min by
using conventional two dimensional electrode. After packing with activated carbon,
30.0 mg N/L ammonia can be reduced to 1.4 mg N/L under similar conditions, leading
to a higher ammonia removal. Product analysis revealed that, nitrite, nitrate and total
nitrogen were 0.004, 3.2, and 7.4 mg N/L, respectively, which indicated that ammonia
was mainly converted to gaseous nitrogen. Single factor experiments shows that longer
HRT, higher chloride concentration and current were beneficial for ammonia removal,
and pH had little effect. Treatment of actual wastewater revealed that 28.0 mg N/L
ammonia can be reduced to 0 mg N/L, together with a removal of total nitrogen from
31.5 mg N/L to 3.5 mg N/L which can reach the level 1 grade A discharge standard of
municipal wastewater.
Finally, electrolysis were performed by packing with vermiculite under continuous
mode. 30.0 mg N/L ammonia can be reduced to 3.4 mg N/L under similar conditions
with a HRT of 6.0 min, which indicated 40% less time were required compared with
activated carbon. Product analysis revealed that, nitrite, nitrate and total nitrogen were
0.004, 4.4, and 11.2 mg N/L, respectively, which indicated that ammonia was mainly
converted to gaseous nitrogen. Single factor experiments shows that longer HRT, higher
chloride concentration and current were beneficial for ammonia removal, and pH had
little effect. Treatment of actual wastewater revealed that 30.0 mg N/L ammonia can be
reduced to 4.6 mg N/L, together with a removal of total nitrogen from 31.3 mg N/L to
8.9 mg N/L. Similarly, 40% less time were required to reach similar treatment effect by
packing vermiculite.
Research results showed that electrochemical method can deeply remove ammonia
to less than 1 mg N/L under both batch and continuous mode. Enhanced removal of
ammonia was observed by packing with activated carbon or vermiculite. Vermiculite
was better than activated carbon due to its adsorption for ammonia, which can increase
the ammonia retention time in the electrolysis reactor, and thus accelerate the reaction
between ammonia and electro-generated activated species (such as active chlorine).
Treatment of actual wastewater under batch and continuous mode showed that ammonia
can be reduced to less that level 1 grade A standard for discharge of municipal
wastewater under suitable conditions. The ammonia removal rate was lower than
synthetic wastewater, which might be caused by the organics or other reducing matters
in municipal wastewater.
Key Word: ammonia, electrolysis, activated carbon, vermiculite
目 录
ABSTRACT
章 绪 论...................................................................................................................1
1.1 研究背景.................................................................................................................1
1.1.1 氨氮的来...........................................................................................1
1.1.2 深度降解氨氮的意义.......................................................................................2
1.2 外研究现.....................................................................................................2
1.2.1 生物法...............................................................................................................2
1.2.2 吹脱汽提...................................................................................................3
1.2.3 离子交换.......................................................................................................4
1.2.4 点加氯法.......................................................................................................5
1.2.5 电化学氧化法...................................................................................................5
1.3 电化学氧化概述.....................................................................................................6
1.3.1 电化学...............................................................................................6
1.3.2 二维电化学氧化法研究现...........................................................................7
1.3.3 维电化学氧化法研究现...........................................................................8
1.3.4 电极材料...............................................................................................9
1.4 课题研究的意义内容.......................................................................................11
1.4.1 研究.........................................................................................................11
1.4.2 研究意义.........................................................................................................11
1.4.3 研究内容.........................................................................................................12
章 材料.......................................................................................................13
2.1 实验装置...............................................................................................................13
2.1.1 间歇流实验装置.............................................................................................13
2.1.2 连续流实验装置.............................................................................................13
2.2 实验试剂材料...................................................................................................14
2.3 实验仪器...............................................................................................................14
2.4 实验...............................................................................................................14
2.5 计算方...............................................................................................................15
第三章 连续流条件下填充活性炭对电化学去除氨氮影响研究...............................16
3.1 填充粒子对氨氮处理效果比较...................................................................16
3.2 氨氮去除机理研究...............................................................................................16
摘要:

填充粒子对电化学除氨氮影响机制研究摘要随着人口增长以及社会经济的快速发展,氨氮排放量日趋增加。2013年国家环境质量公报公布氨氮的排放量已经达到245.7万吨/年。氨氮作为一种水体中常见的污染物,其硝化过程消耗水体中溶解氧为4.6gO2/gNH3。研究表明,在水产养殖过程中,氨对鱼类有一定的毒害作用。此外,作为一种营养元素,氨氮能促进天然水体中藻类的生长与繁殖,造成水体的富营养化,严重时会形成“水华”或者“赤潮”。在现有氨氮的处理技术中,生物法以其处理水量大、成本低等优点占据主要地位。但是该工艺对温度敏感,冬季低温条件下常不能达到预期效果。此外,工业废水中某些有毒有机物会影响微生物的硝化过程,...

展开>> 收起<<
填充粒子对电化学除氨氮影响机制研究.doc

共70页,预览7页

还剩页未读, 继续阅读

作者:侯斌 分类:高等教育资料 价格:15积分 属性:70 页 大小:1.14MB 格式:DOC 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 70
客服
关注