活性炭和AQDS提高厌氧产甲烷效率的实验研究

VIP免费
3.0 侯斌 2024-11-19 4 4 8.7MB 70 页 15积分
侵权投诉
AQDS
摘 要
在我国高浓度有机工业废水产量逐年增加以及能源日益短缺的背景下,环
污染严重,采用厌氧产甲烷技术去除污水中的有机污染物,不仅能有效降低环
负荷,还可以获得沼气且回收生物质能源,可同时满足社会和环境健康、可持
发展的需求。高浓度有机废水易被降解,产甲烷潜力高,然而在厌氧消化过程
中间产物挥发酸(VFAs)的产生和消耗不平衡,极易导致高浓度 VFAs 的积累,pH
值下降,抑制产甲烷菌的活性,系统稳定性变差,极大地抑制了甲烷转化的过
因此解析甲烷转化过程中的限速因子,同时建立有效的解决方案是目前该领域
研究热点问题。
在厌氧消化过程中,高分子有机物转化为甲烷是需要多种微生物相互协作的
复杂过程,在厌氧消化四阶段理论中,从热力学角度分析,脂肪酸厌氧氧化过
在正法自(G’>0)甲烷发进
此,以高浓度 VFAs 为底物的厌氧消化过程的限速步骤是 VFAs 厌氧氧化阶段。而
活性炭和氧化还原介体——蒽醌-2,6-双磺酸(AQDS)都具备促进种间直接电子传
递的潜力,但对复杂厌氧体系的具体促进机制尚不清晰,因此本研究将活性炭
AQDS 加入厌氧产甲烷体系以考察其促进效果。
本文包含三部分试验:1) 活性炭添加量对挥发酸降解转化的影响;2) AQDS
3)
(UASB)处理高浓度啤酒废水的影响。前两部分试验共设有四个对比试验组,根据
添加的活性炭浓度分为:0g/L GAC 组、0.5 g/L GAC 组、5.0 g/L GAC 组、25.0 g/L
GAC 组;第三部分试验设有三组对照反应器,根据添加活性炭粒径的不同命名为 :
R0R1R2,分别是不加活性炭、加颗粒活性炭(10-20 )加粉末活性炭(80-100
)要的研究下。
(1) 首先密闭厌氧瓶内,分别以 1.0 g/L 的单一挥发酸(酸、酸、)
底物不同浓度及氧 (AQDS)厌氧消化
能力的影响进行分析。添加活性炭能有效促进发酸的降解转化,活性
浓度5.0 g/L 时,对系VFAs 降解的促进效最佳,活性炭的添加量不是
越好。添加 AQDS 能进一步促进 VFAs 的降解转化,VFAs 完全降解的时间
短,且随着 AQDS 浓度的增加,VFAs 的降解速度增加,且 5.0 g/L GAC 组的
的降解及产气量大。VFAs 的厌氧降解转化符合级动力学模型由结果可
,活性炭及 AQDS VFAs 降解转化的反应力学常K值,且都
K3>K2>K4>K1 规律0.5 g/L GAC 组、5.0 g/L GAC 组、25.0 g/L GAC 组的 K
1.5~5 组在加入 AQDS K值不同,说明当活性炭
AQDS 两种介质同时在时系统的作用不仅仅是单加作用二者
联合可以进一步促进共生菌体系的电子传递和底物的迁移转化。
(2)不同浓度活性炭(0-25 g/L GAC)对高浓度挥发酸(1.0-5.0 g/L)降解的影响,
依次以递增(1.0-5.0g/L)混合挥发酸(酸、酸、)及高浓度(5.0
g/L)度活浓度 VFAs
程的影响。在以混合 VFAs 为底物时,降解速满足>>酸,最难
解转化。产甲烷及产气率遵循 5.0 g/LGAC >25 g/L GAC >0.5 g/LGAC >0 g/L
GAC 组。随着混合 VFAs 的浓度1.0g/L 增加5.0g/L,底物本降解
的时间依次减小9天减少到 5;在以单一高浓度 VFAs 为底物时,对单
一高浓度挥发酸进行力学分析,级动力学模型K值。在不同底物
下,由结果可加入活性炭组都比空白组的 K值大。底物分别为高浓度酸、
酸 时 , K 遵 循 K3>K4>K2>K1规 律 底 物 为 高 浓 度 酸 时 ,
K4>K3>K2>K1K4K1K28
(3) 础上UASB
径活性炭浓度啤酒废水的厌氧消化降解效果的影响活性
能增UASB 反应器处理高浓度啤酒废水的能力,高底物转化效,生物气及
甲烷含量,此同时,加入活性炭可以UASB 反应器的启动时间;活性炭能
反应器内抗有机负荷冲击的能力;较小粒径的粉末活性炭对 UASB 反应器的
促进作用优于粒径的颗粒活性炭,粉末活性炭在将废水进行能源转化
中具前景。对生物群落行分子生物学分析,加入活性炭菌比
明显增加要分活性炭的心区添加有活性炭的反应器
对水力和负荷冲击持稳定的高处理效加有活性炭的反应
嗜氢产甲烷菌明显空白组,R2 R1,高嗜氢产甲烷菌极大
地促进了产甲烷过程。不同粒径活性炭对微生物种富集有一定的
因此可以过对参数进行来改氧生物反应器,从高系统的
稳定性。
VFAs
啤酒废水
ABSTRACT
The production of high concentration industrial organic wastewater increased
every year, and the energy shortage was serious, leading to environmental pollution.
The use of anaerobic digstion techniques for removing organic pollutants in wastewater,
not only can effectively reduce the environmental load impact, achieve methane and
biomass energy recovery, but also meet the needs of social and environmental health,
sustainable development. High yield of methane can be obtained from wastewater with
high concentrations of biodegradable organics. However, during the anaerobic digestion
process, the generation and consumption of intermediate products-volatile acids (VFAs)
was imbalance, which easily lead to the accumulation of high concentrations of VFAs.
Consequently, pH value decrease leading to the inhibition on the activity of
methanogenic bacteria, and then a vicious circle leading to the significantly inhibited
methane production. Therefore, we aimed to resolve the rate-limiting factor of methane
conversion process, and then establish effective solutions.
During the anaerobic digestion process, the concersion of polymer organic matter
into methane is a complex process, which required various mutual cooperation among
microorganism in the four-stages anaerobic digestion. In thermodynamics, the anaerobic
oxidation of fatty acids can not be spontaneous (G'>0) under the normal conditions,
and the process of generating methane was spontaneous, therefore, the anaerobic
oxidation of high concentration VFAs is the rate-limiting step. It reported that activated
carbon and redox mediator——2,6-anthraquinone disulphonate possessed the potential
for accelerating the efficiency of direct electron transfer between species, nevertheless
their effects on the mixed anaerobic digestion system was unclear. Thus, this study
investigated the stimulating influence of activated carbon and AQDS on the anaerobic
methanization system.
This work consists of three parts, 1) to explore the effect of activated carbon
concentration on the degradation of VFAs; 2) to explore the impact of degradation of
low concentrations VFAs by adding AQDS; 3) the effect of activated carbon with
different sizes in upflow anaerobic sludge blanket (UASB) reactors to treatment high
concentration brewery wastewater. The first two parts cmpared four comparative
groups, named 0 g/L GAC0.5 g/L GAC, 5.0 g/L GAC, 25 g/L GAC respectively; the
third part of the test compared three sets of UASB reactors, named R0, R1, R2, which
was without activated carbon, and with granular activated carbon (10-20 mesh),
powdered activated carbon (80-100 mesh), respectively. The main results are as
follows:
(1) Firstly, in sealed glass bottle, 1.0 g/L of single volatile acids (acetic acid,
propionic acid, butyric acid) were used as single substrate, respectively. Activated
carbon can effectively promote the degradation of volatile acids, and 5.0 g/L activated
carbon concentration was superior to the other concentrations in accelerating the
degradation of VFAs. AQDS can further promote the degradation of VFAs, the
degradation rate and gas production of 5.0 g/L GAC group was the largest than other
groups. The degradation of VFAs was simulated by first order kinetic model, which
results suggested that the activated carbon and AQDS improved the kinetics constant K,
and followed K3> K2> K4> K1 , the K of 0.5 g/L GAC group, 5.0 g/L GAC group, 25
g/L GAC group is 1.5 to 5 times to blank group. K of with and without AQDS was
different in each group, activated carbon and AQDS can extremely improve the
acceleration effect, there will be both together further accelerating electron transfer
promoting effect.
(2) AMPTS test (Automatic Methane Potential Test System), followed in ascending
gradient (1.0-5.0 g/L) of mixing volatile acids (acetic acid, propionic acid, butyric acid)
and high concentration (5.0 g/L) of single VFAs as substrate. To analyse the effect of
different concentrations of activated carbon on high concentration VFAs conversion.
First, mixed VFAs as substrate, the degradation rate of VFAs meet acetate acid > butyric
acid> propionic acid, propionic acid was difficult to degradation. Methane volume and
gas production rate followed 5.0 g/LGAC group> 25 g/L GAC group>0.5 g/LGAC
group>0 g/L GAC group. Further, as the concentration of mixed VFAs increased from
1.0 g/L to 5.0 g/L, the degradation time decreased from 9 days to 5 days. When high
concentration of single VFAs as substrate, the VFAs conversion efficiency with
activated carbon was higher than the control group, the degradation efficiency of 5.0
g/LGAC group was the highest. The dynamic analysis of single VFAsdegradation was
carried according to the first-order kinetic model to obtain K values. Results showed
that the K of added activated carbon groups were more than the control group.
Specifically, when acetic acid and propionic acid were used as the substrate, the K
values were as follows: K3> K4> K2> K1 rule; whereas when butyric acid was used as
the substrate, the K values were as follows: K4> K3> K2> K1, K4 was about 8 times to
K1or K2.
(3) Based on the above experiments, laboratory-scale UASB reactor was used to
explore the effects of the degradation of high concentrations brewery wastewater with
different particle sizes of activated carbon. Results showed that activated carbon can
enhance the UASB reactor treating high concentration of brewery wastewater capacity,
improve substrate conversion efficiency, biogas and methane content, at the same time,
shorten the start-up time of UASB reactor. Activated carbon can enhance the ability to
resist the impact of organic loading in the reactor; activated carbon of the smaller
particle size, i.e. powdered activated carbon was superior to the granular activated
carbon. The results of molecular biological analysis of biological communities showed
that archaea was significantly increased by adding activated carbon, mainly residence to
the inner core region of activated carbon, which ensure the stability of reactor facing
hydraulic and load impact. Furthermore, hydrogenotrophic methanogens was
significantly higher in R1, R2 than the control group, and which proportion of R2 was
slightly higher than R1, which got great potetntial for promoting the production of
methane. Microbial species of R1, R2 , which tightly adsorbed to activated carbon have
the highest similarity. Activated carbon acts as a buffer to some extent to maintain the
balance and stability of the system.
Key Word: VFAs, activated carbon, redox mediator, microbial
populations, UASB reactor, brewery wastewater
目录
ABSTRACT
第一章 绪论......................................................................................................................1
1.1 题背景.................................................................................................................1
1.2 厌氧消化技术的研究......................................................................................1
1.2.1 厌氧消化技术概况...........................................................................................1
1.2.2 厌氧消化本原理...........................................................................................2
1.2.3 厌氧消化过程的菌研究进展.......................................................................4
1.3 高浓度有机废水厌氧消化技术的限速因子分析..................................................5
1.3.1 高浓度有机废水处理方法.......................................................................5
1.3.2 厌氧产甲烷限速因子分析...............................................................................5
1.3.3 研究状及期望...............................................................................................6
1.4 高效厌氧反应器的研究应用.............................................................................9
1.5 研究内容.........................................................................................................9
1.5.1 立题据和研究意义.......................................................................................9
1.5.2 研究技术路线.................................................................................................10
1.5.3 要研究内容.................................................................................................12
二章 材料与方法........................................................................................................13
2.1 材料及设备....................................................................................................13
2.1.1 活性炭.............................................................................................................13
2.1.2 接种污泥.........................................................................................................13
2.1.3 化学试.........................................................................................................14
2.1.4 微量元素.........................................................................................................14
2.2 器设备................................................................................................................14
2.3 内容方法.......................................................................................................15
2.3.1 活性炭添加量对 VFAs 降解转化效的影响..............................................15
2.3.2 AQDS VFAs 降解转化效的影响.........................................................17
2.3.3 活性炭粒径对 UASB 处理高浓啤酒废水效果研究...................................18
2.4 分析参数及方法....................................................................................................18
2.4.1 分析........................................................................................................18
2.4.2 分析方法........................................................................................................18
第三章 活性炭添加量对 VFAs 降解转化效率的影响.................................................21
3.1 ........................................................................................................................21
3.2 试验装置及底...................................................................................................21
3.3 厌氧力学模型....................................................................................................22
3.4 试验内容...............................................................................................................23
3.5 活性炭添加量对单一低浓度挥发酸厌氧降解转化效的影响.......................23
3.5.1 活性炭添加量对酸厌氧降解转化的影响.................................................23
3.5.2 活性炭添加量对酸厌氧降解转化的影响.................................................24
3.5.3 活性炭添加量对酸厌氧降解转化的影响.................................................25
3.6 活性炭添加量对混合挥发酸厌氧降解转化效的影响....................................26
3.6.1 活性炭对 1.0g/L 混合 VFAs 厌氧降解转化的影响.....................................26
3.6.2 活性炭对 2.5g/L 混合 VFAs 厌氧降解转化的影响.....................................30
3.6.3 活性炭对 5.0g/L 混合 VFAs 厌氧降解转化的影响.....................................33
3.7 活性炭添加量对单一高浓度挥发酸厌氧降解转化效的影响.......................36
3.8 活性炭添加量促进单一 VFAs 厌氧降解的反应力学分析............................37
3.8.1 活性炭促进单一低浓度 VFAs 降解的反应力学......................................37
3.8.2 活性炭促进单一高浓度 VFAs 降解的反应力学......................................38
3.9 章小结...............................................................................................................39
第四章 AQDS 对单一低浓度 VFAs 降解转化的影响.................................................41
4.1 ........................................................................................................................41
4.2 试验底...............................................................................................................41
4.3 与讨...........................................................................................................41
摘要:

活性炭和AQDS提高厌氧产甲烷效率的实验研究摘要在我国高浓度有机工业废水产量逐年增加以及能源日益短缺的背景下,环境污染严重,采用厌氧产甲烷技术去除污水中的有机污染物,不仅能有效降低环境负荷,还可以获得沼气且回收生物质能源,可同时满足社会和环境健康、可持续发展的需求。高浓度有机废水易被降解,产甲烷潜力高,然而在厌氧消化过程中中间产物挥发酸(VFAs)的产生和消耗不平衡,极易导致高浓度VFAs的积累,pH值下降,抑制产甲烷菌的活性,系统稳定性变差,极大地抑制了甲烷转化的过程因此解析甲烷转化过程中的限速因子,同时建立有效的解决方案是目前该领域的研究热点问题。在厌氧消化过程中,高分子有机物转化为甲烷是...

展开>> 收起<<
活性炭和AQDS提高厌氧产甲烷效率的实验研究.doc

共70页,预览7页

还剩页未读, 继续阅读

作者:侯斌 分类:高等教育资料 价格:15积分 属性:70 页 大小:8.7MB 格式:DOC 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 70
客服
关注