静电纺丝制备有序介孔炭纤维膜及其电化学性能研究

VIP免费
3.0 侯斌 2024-11-19 4 4 2.61MB 56 页 15积分
侵权投诉
超级电容器,因其优异的功率密度,可观的能量密度以较长的循环寿命等
特性,这些年来备受关注,使其在环境设备、电子产品、电动汽车等领域产生了
巨大应用前景。影响级电容器能的关键要素是电极材料其中,有序
电极材料因其具有大的比表面积、可的孔和规整的孔,并兼具良
导电导热性能在众多材料中脱颖而出静电丝是一种高效制备连续纤维
技术,具有环保、简单、快速等优点,通过该技术制备的有序介孔炭纤维膜,
具有比表面积大、结构可控、工艺简单、成本低廉等优势,是一种极具潜力的电
极材料。
本文旨在尝试采用先进的静电纺丝技术制备出一种新颖的有序介孔炭纤维膜
及其合材料,并在不要任何导电剂和粘结剂的情况下,将之直接用于电极材
中。通过表征与测试研究其微观结构与电化能的相关,为生高性能
的电极材料提供参考。本文的主要研究内容和重要结论如下:
1)以苯酚和甲醛在强碱氢氧化钠的催化下制备热固性酚醛树脂PF将成纤
载体 PVP 和结构导向剂 F127 溶于 PF 乙醇溶液,形成纺丝溶液,通过静电纺丝技
术,结合固化、炭化,得到可控的有序介孔炭纤维膜。精确调节纺丝参数观察
其对微观结构的影响,结果表明:纤维形貌随着 PVP 含量的改变而改变,当 PVP
浓度为 5 wt%时,纤维近似圆柱形,而当 PVP 浓度降低为 3 wt % 1 wt% 时,
纤维貌变为带纤维。电压过大会使炭纤维从有序变为无序结。将有序
介孔炭纤维膜直接用于电极材料中,结果表明,当电流密度为 0.5 A/g 时,PVP
度为 3 wt % 的材料具有最高的比电容,可达 119 F/g这主要归因于其较大的比表
面积。而当电流密度从 0.5 A/g 50 A/g 时,PVP 浓度为 5 wt % 的材料具有最高
的电容保持率,可达 63 %这很大程度归因于其最高的介孔率,在大电流密度下,
较高的介孔率保证了电解液离子有效的快速传输。
2为进一步提高单一有序介孔炭纤维膜的导电性,试图引入碳纳米管CNTs),
PVPF127CNTs溶于PF乙醇溶液,形成纺丝溶液,静电纺丝、固化、炭化制
备有序介孔炭/碳纳米管复合薄膜。观察复合薄膜的纤维形貌和结构特征,并将有
序介孔炭/碳纳米管复合薄膜同样用于电极材料中,测试材料的一系列电化学性能。
结果表明:碳纳米管的加入量过大,会使复合薄膜从有序结构变为无序结构。当
碳纳米管的量达到 2.0 mg 时,会造成纤维出现大量断裂,而当适量加入 0.5 mg
碳纳米管时,当电流密度从 0.5 A/g 增加到 50.0 A/g电容保持率最高可达73.1 %
材料在高倍率下的电容保持率大大提高。
关键词:有序介孔炭 纤维膜 静电纺丝 电化学性能 级电容器
ABSTRACT
Supercapacitors have attracted significant attention in recent years, owing to its
extremely high power density, reasonable energy densityand long cycle life. These
outstanding characteristics have high value and huge potential use in the field of
environmental protection equipment, consumer electronics and electric vehicles, etc.
The electrode material is the crucial part, which determines the performance of
supercapacitors. Among a large number of the electrode materials, Ordered mesoporous
carbons not only have high surface areaunified pore sizebut also have better electric
and thermal conductivity. Electrospinning is a simple and efficient way for the fabricate
continuous nanofiber. Ordered mesoporous carbon fiber membrane(MCFs) based on
electrospinning are promising and flexible electrode material for supercapacitors due to
high specific surface area, high electrical conductivity, simple process, low cost and
free-standing nature.
In this work, our goal is to prepare high-powered MCFs , and to compound MCFs
with carbon nanotube (MCFCNTs). MCFs or MCFCNTs were prepared by
electrospinning, followed by further polymerization and carbonization. Moreover, the
capacitive performance of the obtained samples was investigated and the relationship
between the structure of samples and electrochemical properties was discussed. The
main contents can be concluded as follows:
(1) MCFs were prepared by electrospinning a mixture of phenolic resin, PVP and F127.
The ordered mesostructure of MCFs was controlled carefully by tuning the PVP content,
velocity and voltage of the spinning. Results show that the PVP content plays important
role in the microstructure of MCFs. As the content of PVP changing from 5 wt% to 1
wt%, the fiber with the cylindrical fiber turned into the ribbon-like one. The voltage of
the spinning affect the ordered structure of MCFs. The electrochemical tests show that
the capacitance of MCF-3-0.5-20 can reach as high as 119 F/g at density of 0.5 A/g. The
retention of the capacitance of MCF-5-0.5-20 is as high as 63 % when the current
density increases from 0.5 to 50 A/g, because of its highest rate of mesoporous.
(2) MCFCNTs were prepared by electrospinning a mixture of phenolic resin, PVP,
F127 and CNTs. The content of CNTs was changed to investigate the effect in the
microstructure of MCFCNTs. It is found that content of CNTs has a crucial role in the
self-assembly process. When the content is as low as 0.5 mg or 1.0 mg, the MCFCNTs
can keep the integrity and the ordered mesostructure can be kept. However, as the
content of CNTs increasing to 2.0 mg, the MCFCNTs have many cracks and the
self-assembly process was destroyed. The electrochemical performance of MCFCNTs
was examined. The retention of capacitance of MCFCNT-0.5 is as high as 73.1 % when
the current density increases from 0.5 A/g to 50 A/g. The capacitance retention of the
MCFCNTs is greatly improved.
Key Word: ordered mesoporous carbon, fiber membrane,
electrospinning, electrochemical performance, supercapacitor.
中文摘要
ABSTRACT
第一章 ..................................................................................................................1
1.1 .....................................................................................................................1
1.2 超级电容器...........................................................................................................1
1.2.1 超级电容器的概念及特点..............................................................................1
1.2.2 超级电容器的原理及分类..............................................................................2
1.3 多孔炭材料............................................................................................................3
1.3 1 活性炭..............................................................................................................4
1.3.2 炭气凝胶..........................................................................................................5
1.3.3 碳纳米管..........................................................................................................5
1.3.4 石墨烯..............................................................................................................5
1.3.5 有序介孔炭......................................................................................................6
1.4 有序介孔炭纤维膜...............................................................................................6
1.4.1 有序介孔炭纤维膜的制备方法......................................................................7
1.5 静电纺丝...............................................................................................................8
1.5.1 静电纺丝概述..................................................................................................8
1.5.2 静电纺丝装置及原理......................................................................................9
1.5.3 静电纺丝影响因素.........................................................................................10
1.6 选题背景及主要研究内容...................................................................................11
第二章 实验部分...........................................................................................................13
2.1 化学试剂..............................................................................................................13
2.2 主要装置与工艺路线...........................................................................................13
2.2.1 工艺路线.........................................................................................................13
2.2.2 酚醛树脂乙醇溶液的配制.............................................................................14
2.2.3 纺丝溶液的制备.............................................................................................14
2.2.4 静电纺丝装置.................................................................................................14
2.2.5 固化.................................................................................................................15
2.2.6 炭化.................................................................................................................15
2.3 分析测试方法......................................................................................................16
2.3.1 常规表征方法.................................................................................................16
2.3.2 电化学性能测试.............................................................................................16
第三章 有序介孔炭纤维膜的制备及电化学性能研究...............................................19
3.1 ....................................................................................................................19
3.2 研究方案..............................................................................................................19
3.3 结果与讨论......................................................................................................... 19
3.3.1 不同含量的 PVP 对炭纤维膜纤维形貌及孔道结构的影响....................... 19
3.3.2 不同纺丝电压对炭纤维膜孔道结构的影响.................................................24
3.3.3 不同纺丝速率对炭纤维膜孔道结构的影响.................................................27
3.4 电化学性能研究..................................................................................................28
3.4.1 恒电流充放电测试.........................................................................................28
3.4.2 循环伏安测试.................................................................................................30
3.4.3 三种样品的恒电流充放电测试.....................................................................30
3.4.4 三种样品的交流阻抗测试.............................................................................31
3.5 本章小结..............................................................................................................32
第四章 有序介孔炭/碳纳米管复合薄膜的制备及电化学性能研究..........................33
4.1 ................................................................................................................... 33
4.2 研究方案.............................................................................................................. 33
4.3 结果与讨论......................................................................................................... 34
4.3.1 复合薄膜的化学结构.................................................................................... 34
4.3.2 复合薄膜的纤维形貌.....................................................................................34
4.3.3 复合薄膜的孔道结构.....................................................................................35
4.4 电化学性能研究..................................................................................................36
4.4.1 恒电流充放电测试.........................................................................................36
4.4.2 循环伏安测试.................................................................................................38
4.4.3 四种样品的恒电流充放电测试.....................................................................39
4.4.4 四种样品的交流阻抗测试.............................................................................40
4.5 本章小结..............................................................................................................40
第五章 主要结论及下一步工作建议...........................................................................42
5.1 本论文的主要结论..............................................................................................42
5.2 下一步工作建议..................................................................................................42
参考文献.........................................................................................................................44
在读期间公开发表的论文及取得成果.........................................................................52
.............................................................................................................................53
第一章
1
第一章
1.1 引言
随着社会经济的迅速发展,人口密度的不断增长全球生态环境的日益恶化
及能源的日渐短缺,已成为现如今备受关注的话题。随着市场上便携式环境装备、
电子件、电动汽车的广泛推出,有高功率、低成本和无污染的储器件
人们迫切发展的市场需求。电化学电容器,比统电容器,具有的比电
及更高的能量密度,二次电池,具有高的功密度及更长的循环寿命
时可实现大电流充放电[1,2]。相较之下,其电容上升了三至四个数量级,可高达法
拉级,因而得名——超级电容器[3]在动力开发领域,可作为无污染的驱动及备用
电源,用于多种环保设备[4]如今,发达国家已把超级电容器列入国家重点战略[5]
我国也已将其列入 863973 等计划重大专项的科研重点。
1.2 超级电容
1.2.1 超级电容器的概念及特点
超级容器,兼顾传统容器及二次池的优势,并弥补了二者的不足
1-1 详细列出了这三种储能器件的性能参数对比,同时超级电容器还具有以下优
异特性[6]
1)功率密度高:由于内电阻很小,电荷能进行快速存储和释放,短时间内超级
电容器可释高达上培的电流因此率密度二次电池的几十倍,可高达
10 kW/kg
2充电时间短:通过双电层的物理充放电过程或活性物质可逆的电化学过程来
实现电的。超电容器的优势之就是可以实大电流快速充电,可在几十
秒甚至瞬时完成充电,而二次电池需要几个小时才能完成充电。
3)使用寿命长:充放电过程中,只发生离子和电荷的转移,没有相变过程,
此电容基本没有衰减,循环寿命可高达 10 万次,而二次电池的循环寿命在 1000
次以下。
4)低温性能好:充放电过程中,电荷的转移基本只发生于活性物质表面,因此
随温度的降低,电容的衰减很少。超级电容器的温度为-40-85 ℃,而二次电池仅为
0-40 ℃,且在低温时电池的衰减程度高达 70%。
5)体积小:轻便易于安装,节省设备空间,同时具备超大的静电容量,达到铝
电解电容器的 300 倍。
6)装有特殊的防爆装置,具有机械强度高,安全可靠,成本较低,环保无污染
等特点。
摘要:

摘要超级电容器,因其优异的功率密度,可观的能量密度以及较长的循环寿命等特性,这些年来备受关注,使其在环境设备、电子产品、电动汽车等领域产生了巨大的应用前景。影响超级电容器性能的关键要素是电极材料。其中,有序介孔炭电极材料,因其具有大的比表面积、可控的孔径和规整的孔道,并兼具良好的导电、导热性能,在众多材料中脱颖而出。静电纺丝是一种高效的制备连续纤维的技术,具有环保、简单、快速等优点,通过该技术制备的有序介孔炭纤维膜,具有比表面积大、结构可控、工艺简单、成本低廉等优势,是一种极具潜力的电极材料。本文旨在尝试采用先进的静电纺丝技术制备出一种新颖的有序介孔炭纤维膜及其复合材料,并在不需要任何导电剂和...

展开>> 收起<<
静电纺丝制备有序介孔炭纤维膜及其电化学性能研究.pdf

共56页,预览6页

还剩页未读, 继续阅读

作者:侯斌 分类:高等教育资料 价格:15积分 属性:56 页 大小:2.61MB 格式:PDF 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 56
客服
关注