地铁隧道围岩土壤温度场演化特性研究

VIP免费
3.0 侯斌 2024-11-19 4 4 5.79MB 97 页 15积分
侵权投诉
地铁列车在区间隧道内运行时释放大量的热,随着地铁运营年限的增加,其
区间隧道内温度逐年上升,从而影响列车和站台的环控能耗,这逐渐成为地铁设
计运营中关注的热点问题。这一问题的核心之处在于地铁隧道内空气与围岩土壤
热湿传递规律,本文则重点研究在空气侧温度周期性波动情况下,区间隧道土壤
盾构的蓄放热特性,通过理论模型分析、缩尺模型试验、软件模拟相结合的研究方
法,得到盾构土壤温度动态变化特性,为保证地铁区间隧道热环境满足正常运营
的需求提供重要参考。
理论模型的选取为试验台的搭建型式服务,通过对既有传热理论的分析发现,
现有地铁隧道围岩传热计算模型有稳态导热计算模型和非稳态导热计算模型,稳
态导热计算模型又分为圆筒计算模型和多层平壁计算模型,而本文研究内容中空
气侧和土壤侧温度均随时间动态变化。分析了各模型的优缺点,目前还没有与本
研究内容完全相符的理论模型,鉴于多层平壁模型便于实验台搭建和操作,本文
理论采用多层平壁模型,并进行动态研究。
模型实验台可以分为三个部分:空气加热及送风装置(A)、土体及温湿度和
热流密度采集装置(B)、实验台支撑框架(C在遵循傅里叶准则的基础上,确
定实验台的各个尺寸参数,温度边界条件以上海地铁衡山路站隧道内全年空气
度实测值为依据,对每个月的实测温度取平均值,得到 12 个温度依次循环作用于
土壤表面,研究土壤内温度、含水率以及热流密度的变化情况。研究结果表明:土
壤内整体温度场第 10 年左右趋于稳定,10 个测点处的温度波动随土壤深度的增
加存在衰减和延迟。容积含水率的变化可以分为三个阶段:滞后反应阶段、固定蒸
发速率阶段、蒸发速率递减阶段。热量可以通过两种方法得到:一、实验过
测的热流密度算,、温度分布曲线面积积分在传热面积 下
对传热过非稳定的第 1年、稳定的第 17 年每月及实验周期 17 年每年的热量进
行了对,发现两种计算方法热量相差不大,基本规律一
CHAMPS-BES
并和实验结果究,者偏差较小;通过软件模拟了上海地
地铁隧道围岩土壤的传热情况,发现软件模拟和实验研究的温度场分
规律基本一,稳定以后热库厚度在 25m 左右、库峰值稳定在 25.7℃左右、
壁面 2.2m之后分析了中五种典型土壤的传热差异发现土
岩时传热,到第 20 年时热已经超出50m 围,其他四种
的土壤传间存异但不是通过软件模拟了土壤参数的
变化对土壤传热的影响,发现土壤侧参数的变化对土壤传热的影响明
越小、导热大、密度越小、容积含水率越小越于传热。
论文研究内容紧扣地铁区间隧道热环境的热点问题,深分析了土壤盾构蓄
放热规律,为地下盾构土建施工区间隧道内热环境控以及地铁区间和车站环
系统运营提供重要参考,研究内容较强的现实意义
键词:地铁围岩土壤 土壤温度 热流密度 土壤传热缩尺模型实验
CHAMPS-BES 软件
ABSTRACT
Subway train releases large amounts of heat when running in tunnel, with
increasing age of subway operation, the tunnel of the temperature rises year by year,
thus affecting the energy consumption of the environment control of the train and the
platform, which is gradually becoming a hot issue focus on subway design and
operation. At the heart of this problem is heat and moisture transfer law between air in
the subway tunnel and surrounding rock and soil, this paper focuses on studying heat
storage and release of the tunnel soil shield in the case of air-side temperature cyclical
fluctuation, to obtain the dynamic variation characteristics of shield soil temperature by
the research methods of combining with theoretical model analysis, scale model test,
software simulation, providing an important reference for the guarantee Subway Tunnel
thermal environment to meet the needs of normal operation.
The selection of theoretical model services for building test bench type , there is
steady heat conduction calculation model and unsteady heat conduction calculation
model in existing subway tunnel surrounding rock heat transfer calculation model
through the analysis of existing heat transfer theory, steady heat conduction calculation
model is divided into cylinder calculation model and multi-layer flat wall calculation
model, but the contents of this paper are dynamic variation over time of the air side and
the soil side temperature. Analysis of advantages and disadvantages of each model,
there is no theoretical model fully consistent with this research, in view of the multi-
layer flat wall model to facilitate test bench building and operating, so this theory is
using of multi-layer flat wall model, and doing dynamic research.
Model bench can be divided into three parts: air heating and air supply means (A),
soil temperature and humidity and heat flux collection device (B), bench support frame
(C). In complying with the guidelines on the basis of Fourier, determining bench
parameters of each size, and using the Shanghai Hengshan Road Station subway tunnel
annual air temperature measured value as temperature boundary condition basis,
averaged the measured temperature of each month, to obtian12 temperature values
cyclically affect the soil surface in order, to study temperature ,moisture in soil and heat
flux change Situation. The results showed that: the whole temperature field in the soil
around. the 10th year tend to be stable, temperature fluctuations at the 10 measured
points with the presence of increased soil depth of attenuation and delay. Changes in the
volume of water content can be divided into three phases: lagged response phase, a
fixed rate of evaporation phase, the evaporation rate decreasing phase. Heat transfer can
be obtained in two ways: First, the measured heat flux conversion in experiment, and
the second, the temperature profile of the area integration conversion; Under the heat
transfer area, compared heat transfer of each month in 1th year of unsteady heat
transfer process, stability in the 17th year and experimental period of 17 years the
annual amount of heat exchange found that the little difference between two calculation
methods resulting heat transfer, and the basic rule is consistent.
In software research, first with CHAMPS-BES software to simulate the test bench
heat transfer and compared with experimental results of study found that both small
deviation ; Then though software to simulate the heat transfer situation in Shanghai area
actual subway tunnel surrounding rock soil, compared to find the distribution of the
temperature field in software simulation and experimental study of are basically the
same, After steady thermal store thickness is about 25m, thermal store peak is stable at
around 25.7, thermal store peak position is 2.2m from wall; then analysis the heat
transfer difference of five typical soils of China, found the sandstone soil is most
favorable heat transfer, to 20th year ,the thickness of the thermal store is beyond the
scope of 50m, the presence of heat transfer of other four earthy soil between each other,
but not particularly obvious. Finally, though software simulates the impact of changes in
soil parameters on soil heat ,and found that changes in soil side parameters affected heat
transfer significantly, the smaller the specific heat capacity, the greater thermal
conductivity, the smaller the density, the smaller the volume moisture the more
conducive to heat transfer.
The paper closely linked to hot issue of thermal environment in subway tunnel,
deeply analyzed the law of heat storage and release of the soil shield, providing an
important reference for the underground shield civil construction, tunnel of heat
environment control, as well as the subway section and environmental control system of
operator station, the research has practical significance.
Keywords: subway surrounding rock soil, underground soil
temperature heat flux, heat transfer scale model experiment,
CHAMPS-BES software.
目 录
ABSTRACT
第一章 绪..................................................................................................................1
1.1 选题背景意义.....................................................................................................1
1.2 地铁隧道围岩土壤温度场研究现.........................................................2
1.2.1 内研究现................................................................................................2
1.2.2 国外研究现................................................................................................3
1.3 题的要内容及意义.........................................................................................5
二章 地铁隧道围岩土壤传热实验台搭建的理论基础与..............................6
2.1 地铁隧道土壤传热模型的建.............................................................................6
2.2 地铁隧道围岩土壤导热计算模型分析及选取.....................................................7
2.2.1 稳态导热计算模型分析................................................................................8
2.2.2 非稳态导热计算模型分析..........................................................................11
2.2.3 导热计算模型的选取..................................................................................13
2.3 地铁隧道围岩土壤导热过准则的...................................................13
2.4 章小...............................................................................................................15
第三周期性热作用下土壤温度场化特性的实验台搭建............................16
3.1 实验目的...............................................................................................................16
3.2 实验台设计及搭建...............................................................................................16
3.2.1 实验台..................................................................................................16
3.2.2 实验台尺寸的确定......................................................................................21
3.3 温度边界条件的取值...........................................................................................23
3.4 土壤参数的测试实验...........................................................................................25
3.4.1 土壤含水率测试实验..................................................................................25
3.4.2 土壤密度测试实验......................................................................................26
3.5 实验步骤..............................................................................................................27
3.6 章小..............................................................................................................27
四章 周期性热作用下土壤温度场化特性实验结果分析...............................29
4.1 土壤热库形成的实验结果与分析.......................................................................29
4.1.1 1个周期内土壤热动态成过......................................................29
4.1.2 实验 17 个周期土壤热分析........................................................31
4.1.3 土壤内各测点温度波动分析......................................................................35
4.2 土壤含水率变化的实验结果与分析...................................................................39
4.3 土壤蓄放热量的实验结果与分析.......................................................................42
4.3.1 非稳定型周期内热流量变化过分析..................................................43
4.3.2 稳定型周期内热流量变化过分析......................................................45
4.3.3 实验周期(实模型 17 年)内热流量变化过分析............................48
4.4 章小..............................................................................................................50
五章 地铁围岩土壤温度场化规律的模拟研究...................................................51
5.1 CHAMPS 软件介绍.............................................................................................51
5.1.1 CHAMPS-BES ....................................................................................51
5.1.2 水分传递方..............................................................................................52
5.1.3 能量传递方..............................................................................................53
5.2 模型的建及方条件的确定...................................................................54
5.2.1 地铁隧道围岩理模型..............................................................................54
5.2.2 空气边界条件..............................................................................................54
5.2.3 土壤边界条件..............................................................................................55
5.2.4 边界条件..............................................................................................56
5.3 实验结果与软件模拟的对验证.......................................................................57
5.4 上海隧道围岩土壤温度和含水率化规律研究...............................................58
5.4.1 成及动过..............................................................................58
5.4.2 库峰值大的变化和置的..........................................................61
5.4.3 不同位置处温度场的变化过..................................................................62
5.4.4 土壤容积含水率的变化过......................................................................64
5.5 型土壤型传热对研究...............................................................................66
5.6 温度场化规律的影响因素研究.......................................................................71
5.6.1 不同土壤热容对围岩传热的影响..........................................................71
5.6.2 不同土壤导热数对围岩传热的影响......................................................75
5.6.3 不同土壤密度对围岩传热的影响..............................................................79
5.6.4 不同土壤容积含水率对围岩传热的影响..................................................83
5.7 章小..............................................................................................................85
六章 结与展望.......................................................................................................86
6.1 论文...............................................................................................................86
6.2 展望..........................................................................................................87
6.3 论文的创新...............................................................................................88
摘要:

地铁隧道围岩土壤温度场演化特性实验研究摘要地铁列车在区间隧道内运行时释放大量的热,随着地铁运营年限的增加,其区间隧道内温度逐年上升,从而影响列车和站台的环控能耗,这逐渐成为地铁设计运营中关注的热点问题。这一问题的核心之处在于地铁隧道内空气与围岩土壤热湿传递规律,本文则重点研究在空气侧温度周期性波动情况下,区间隧道土壤盾构的蓄放热特性,通过理论模型分析、缩尺模型试验、软件模拟相结合的研究方法,得到盾构土壤温度动态变化特性,为保证地铁区间隧道热环境满足正常运营的需求提供重要参考。理论模型的选取为试验台的搭建型式服务,通过对既有传热理论的分析发现,现有地铁隧道围岩传热计算模型有稳态导热计算模型和非稳...

展开>> 收起<<
地铁隧道围岩土壤温度场演化特性研究.doc

共97页,预览10页

还剩页未读, 继续阅读

作者:侯斌 分类:高等教育资料 价格:15积分 属性:97 页 大小:5.79MB 格式:DOC 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 97
客服
关注