基于有机污染物降解的低温等离子体电源的设计与应用研究
![](/assets/7a34688/images/icon/s-pdf.png)
VIP免费
中文摘要
由工业发展产生的难降解有机废水使得环境污染日益严重,常规的生物处理
法和物理化学法等环境治理方法已经难以满足目前形势的要求,采用低温等离子
体治理环境污染是近年来发展起来的新技术。高功率脉冲电源能够加速电子,产
生活性粒子,被称为低温等离子体的能量源,低温等离子体的产生是:高频脉冲
电源在一定时间内对储能单元进行充电,然后通过脉冲形成单元把储存的能量快
速释放到反应器负载上。
根据难降解有机污染物处理时对脉冲的要求,结合电力电子与脉冲功率技术,
设计了一种能够输出高压、高重复频率脉冲的低温等离子体电源。电源输入为三
相不可控整流电路,LC滤波电路滤除直流中的脉动电流;分析了电流断续模式下
(DCM)LC谐振变换器恒流充电的特点,并用MATLAB进行仿真验证;采用PWM
全桥移相软开关技术使变换器开关管均工作于软开关下,从而降低了开关管通态
损耗,提高了电源效率。
设置电路参数,对电源系统进行仿真,得到电压幅值25 kV、频率20 kHz、ns
级上升沿的高压脉冲;且电压和频率是可以连续调节的。满足介质阻挡反应器放
电对电源的要求,说明了设计的可行性。
选择TMS320F2812芯片作为电源控制核心,分析了H桥式互锁电路以实现
IGBT的驱动;并完成了采样电路及保护电路的设计;针对变压器存在分布参数、
散热与绝缘等问题,设计了符合要求的高频变压器;对电磁干扰等问题给出了解
决方案。
研究了不同电压和频率下低温等离子体对废水中有机污染物的降解情况,得
出脉冲峰值越高降解效果越好,重复频率越高越有利于降解率的提高。该电源能
够产生高压、高频脉冲,验证了理论分析和试验的一致性。为低温等离子体在环
境治理方面的应用提供了参考。
关键词:低温等离子体电源 介质阻挡放电 LC谐振变换器 ns级
MATLAB仿真
ABSTRACT
Environmental pollution due to the refractory organic wastewater from industrial
development is becoming more and more serious, and the traditional methods for
environmental pollution control, such as biological treatments and physical and
chemical methods, cannot meet the requirements of environmental protection in current
situation. Using low temperature plasma control environmental pollution is a new
technology developed. Electrons are accelerated by the high pulse power generator,
which is the cause of isothermal plasma energy sources. The mechanism of low
temperature plasma can be described as: In a certain period of time, high voltage DC
power supply will charge the energy storage unit, then released to the load quickly, so
the high voltage pulse can be formed.
Combined with the power electronic technology and pulse power technology, one
pulse power generator which can generate high voltage and high repetition frequency is
designed in this paper for environmental protection. Three-phase uncontrolled rectifier
is used as input circuit and LC filter circuit is adopted to remove dc pulse. The working
process of the main circuit is analyzed under the discontinuous current mode (DCM)
transform, which illustrates the LC series resonance transform has the characteristics of
constant current charging, and MATLAB simulation also can tell it. PWM full bridge
phase shifting technology can make all IGBT working in soft switch condition, which
can reduce energy loss caused by hard switch. So the efficiency of this power generator
is improved.
By setting appropriate load parameters for the power system simulation, the
maximum output voltage amplitude reached up to 25 kV with nanosecond rise time and
about 1.2 kHz repetition frequency, which can meet the requirements of dielectric
barrier discharge. So the feasibility of the power system is verified.
Choosing TMS320F2812 as the controller of the core power, the H type interlock
circuit for driving IGBT is analyzed. And sampling circuit and protection circuit is
completed. Based on distributed parameter, heat dissipation, high frequency transformer
insulation and other issues, we decide to use vice edge winding to produce transformer
which can meet the requirements of high frequency. A solution for the problem of
electromagnetic interference is given in this paper.
Under different peak voltage and discharge frequency, organic wastewater was
tested. The results showed that this designed power supply could effectively develop
non-thermal plasma, and the degradation rate increased with the increasing of peak
voltage and discharge frequency. The power generator can produce high voltage, high
frequency pulse, so the theoretical analysis and experiment are verified to be consistent.
This paper can also offer a reference for the applications of low temperature plasma in
environmental protection.
Key words: Low temperature plasma power supply, Dielectric barrier
discharge, LC resonant converter, Ns level, MATLAB
circuit simulation
目录
中文摘要
ABSTRACT
第一章 绪论„„„„„„„„„„„„„„„„„„„„„„„„„„„„1
1.1 研究的目的及意义„„„„„„„„„„„„„„„„„„„„„„1
1.2 研究现状„„„„„„„„„„„„„„„„„„„„„„„„„„1
1.2.1 低温等离子体概述„„„„„„„„„„„„„„„„„„„1
1.2.2 脉冲功率技术概述„„„„„„„„„„„„„„„„„„„3
1.2.3 低温等离子体电源研究现状„„„„„„„„„„„„„„„4
1.2.4 高频电源的发展趋势„„„„„„„„„„„„„„„„„„5
1.2.5 低温等离子体技术处理水中难降解有机污染物„„„„„„„6
1.3 论文的主要研究内容„„„„„„„„„„„„„„„„„„„„„7
1.4 论文的路线„„„„„„„„„„„„„„„„„„„„„„„7
第二章 低温等离子体电源的整体设计„„„„„„„„„„„„„„„„„9
2.1 系统原理方框图 „„„„„„„„„„„„„„„„„„„„„„9
2.2 介质阻挡放电反应器分析„„„„„„„„„„„„„„„„„„„9
2.3 电源主电路„„„„„„„„„„„„„„„„„„„„„„„„„11
2.4 系统仿真„„„„„„„„„„„„„„„„„„„„„„„„„„11
2.5 本章小结„„„„„„„„„„„„„„„„„„„„„„„„„12
第三章 谐振变换器电路原理„„„„„„„„„„„„„„„„„„„„„13
3.1 谐振电路基本结构„„„„„„„„„„„„„„„„„„„„„13
3.2 LC 串联谐振电路分析„„„„„„„„„„„„„„„„„„„14
3.3 LC 串联谐振充电技术„„„„„„„„„„„„„„„„„„„„16
3.3.1 LC 串联谐振三种电流模式„„„„„„„„„„„„„„„16
3.3.2 恒流充电„„„„„„„„„„„„„„„„„„„„„18
3.3 PWM 移相全桥 ZVS 逆变电路工作原理„„„„„„„„„„„„„18
3.3.1 开关过程分析„„„„„„„„„„„„„„„„„„„„19
3.3.2 全桥移相 ZVS 的实现条件„„„„„„„„„„„„„„„„23
3.4 谐振变换器仿真验证„„„„„„„„„„„„„„„„„„„„23
3.4.1 LC 谐振恒流充电仿真分析„„„„„„„„„„„„„„„24
3.4.2 PWM 移相 ZVS 仿真分析„„„„„„„„„„„„„„„„„25
3.5 本章小结„„„„„„„„„„„„„„„„„„„„„„„„„27
第四章 低温等离子体电源的设计„„„„„„„„„„„„„„„„„„28
4.1 输入整流滤波电路„„„„„„„„„„„„„„„„„„„„28
4.1.1 整流电路的选择„„„„„„„„„„„„„„„„„„„„28
4.1.2 滤波电路的设计„„„„„„„„„„„„„„„„„„„„30
4.2 IGBT 的选择„„„„„„„„„„„„„„„„„„„„„„„32
4.3 高频变压器设计„„„„„„„„„„„„„„„„„„„„„„32
4.3.1 磁芯材料的选择„„„„„„„„„„„„„„„„„„„„32
4.3.2 变压器参数计算„„„„„„„„„„„„„„„„„„„„32
4.4 电源的控制系统„„„„„„„„„„„„„„„„„„„„„„34
4.4.1 触发脉冲方式的选取„„„„„„„„„„„„„„„„„„35
4.4.2 控制系统的结构„„„„„„„„„„„„„„„„„„„„36
4.4.3 控制器接口电路„„„„„„„„„„„„„„„„„„„„37
4.5 驱动与保护电路„„„„„„„„„„„„„„„„„„„„„„38
4.5.1 驱动电路„„„„„„„„„„„„„„„„„„„„„„„38
4.5.2 驱动器 2SC0435T 接口电路„„„„„„„„„„„„„„„„39
4.5.3 电流与电压采样电路„„„„„„„„„„„„„„„„„„42
4.6 本章小结„„„„„„„„„„„„„„„„„„„„„„„„„43
第五章 低温等离子体电源的试验及应用研究„„„„„„„„„„„„„„44
5.1 电源试验„„„„„„„„„„„„„„„„„„„„„„„„44
5.1.1 软启动电路„„„„„„„„„„„„„„„„„„„„44
5.1. 2 叠层母线排„„„„„„„„„„„„„„„„„„„45
5.2 设计时需要考虑的问题„„„„„„„„„„„„„„„„„„„45
5.2.1 抗干扰分析„„„„„„„„„„„„„„„„„„„„„„45
5.3 试验波形„„„„„„„„„„„„„„„„„„„„„„„46
5.4 电源效率分析„„„„„„„„„„„„„„„„„„„„„„„47
5.5 低温等离子体处理水中难降解有机物的应用研究„„„„„„„„47
5.5.1 放电电压对有机污染物降解的影响„„„„„„„„„„„„47
5.5.2 放电频率对有机污染物降解的影响„„„„„„„„„„„„48
5.6 本章小结„„„„„„„„„„„„„„„„„„„„„„„„„„49
第六章 总结与展望„„„„„„„„„„„„„„„„„„„„„„„„„50
附录„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„51
参考文献„„„„„„„„„„„„„„„„„„„„„„„„„„„„„52
在读期间公开发表的论文和承担科研项目及取得果„„„„„„„„„„„56
致谢„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„57
第一章 绪论
1
第一章 绪论
低温等离子体技术在环境保护、食品杀菌消毒、制取臭氧、材料表面改善、
超强紫外光源及国防领域等方面都有广泛的应用。脉冲电源能够产生电压等级与
重复频率都高的纳秒级窄上升前沿的脉冲,为产生等离子体提供能量源。气体火
花隙开关、磁压缩器、Blumlein 传输线和半导体开关(SOS)等开关器件被用于高
压高频电源的研制中,为实现高频电源的大功率、高重复频率、系统稳定性高及
寿命长提供了可能。
1.1 研究的目的及意义
随着工业的快速发展,环境污染问题却越来越严重。淡水资源占了地球表面
水体部分的 2.5%,可直接取用的只占 0.22%,我国淡水资源人均年拥有量少于 1/4
的世界平均水平,近年来我国国民生产总值不断增长,淡水需求量在逐年增加的
同时水体污染问题也日趋严峻,统计显示 80%的疾病来源于水体中的有机污染物。
由有机污染物造成的危害有很多,主要是:污染饮用水,影响人体健康; 增加人类
病原菌耐药性,造成肠道菌群失调; 污染土壤和食物,间接影响人体健康; 半衰期
较长,能在机体内长时间积累,很难被生物降解;低浓度便可影响水中生物生殖;
引起人类发育异常,造成一定程度的生殖障碍,干扰人体内分泌调控等。
在科学技术不断发展的今天,有不少水处理技术被用于有机废水的降解,然
而对农药、造纸、印染等有毒、难生化降解的有机废水的处理仍是当前人们面临
的难点,也诞生了一些新的水处理技术。低温等离子体化学等新技术由于在难降
解有机废水处理方面所表现出的高处理效率等优点正逐渐吸引越来越多的眼球,
其处理机理是:处于强电场条件下促使水与氧气发生反应,激发出的带有强氧化
性自由基,作用于废水中的污染物,伴随着物理化学的复杂变化,将大分子有机
污染物氧化为 CO2、水或盐,而且这一过程不会产生二次污染,因此低温等离子
体在有机物降解方面具有很大潜力。
本文所研究的低温等离子体电源,对有机物的降解有着很重要的意义。
1.2 研究现状
1.2.1 低温等离子体概述
等离子体[1]是气体发生电离后,形成的离子化基本形态。在自然中,它与固态、
液态、气 态三态是不相同的,被称为第四态。等离子体是由激发态的原子、分子、
电子和正负离子组成的,并且在空间内可以自由的运动,不会受到任何其他物质
摘要:
展开>>
收起<<
中文摘要由工业发展产生的难降解有机废水使得环境污染日益严重,常规的生物处理法和物理化学法等环境治理方法已经难以满足目前形势的要求,采用低温等离子体治理环境污染是近年来发展起来的新技术。高功率脉冲电源能够加速电子,产生活性粒子,被称为低温等离子体的能量源,低温等离子体的产生是:高频脉冲电源在一定时间内对储能单元进行充电,然后通过脉冲形成单元把储存的能量快速释放到反应器负载上。根据难降解有机污染物处理时对脉冲的要求,结合电力电子与脉冲功率技术,设计了一种能够输出高压、高重复频率脉冲的低温等离子体电源。电源输入为三相不可控整流电路,LC滤波电路滤除直流中的脉动电流;分析了电流断续模式下(DCM)LC...
相关推荐
-
VIP免费2024-10-15 6
-
VIP免费2024-10-15 8
-
VIP免费2024-10-15 6
-
VIP免费2024-10-15 6
-
VIP免费2024-10-15 6
-
VIP免费2024-10-15 6
-
VIP免费2024-10-15 7
-
VIP免费2024-10-15 6
-
VIP免费2024-10-15 10
-
VIP免费2024-10-15 11
作者:侯斌
分类:高等教育资料
价格:15积分
属性:60 页
大小:2.09MB
格式:PDF
时间:2024-11-19