液体真空冷却的实验研究及小型真空冷却装置的设计

VIP免费
3.0 陈辉 2024-11-19 4 4 2.55MB 58 页 15积分
侵权投诉
摘 要
液态类食品的真空冷却具有冷却速率快、冷却效果均匀、清洁无污染等优点,
但也存在失水量较大的缺点。失水将对液态食品的品质产生不利影响,如何降低
无效失水成为保证冷却后食品品质的关键。本文以相对失水率作为判断依据,并
采用水作为试验对象,探索降低液体真空冷却过程中失水的方法;另外以蔗糖溶
液作为实验对象,研究真空冷却对溶液浓度变化产生的影响。
实验结果表明,圆柱形广口容器不利于降低失水,若使用带孔容器盖或滤网
等单层遮挡物可对水分飞溅起到一定的阻挡作用,无效失水和相对失水率都有所
降低,但不足之处在于仍有较多水分从盖子的小孔处或滤网表面的凝结水膜上飞
溅到容器外。同时使用以上两种遮挡物的效果最佳,降低无效失水的效果非常明
显,实际失水非常接近理论失水。
使用较高的窄口容器对于降低失水十分有利,相对失水率最低仅为 1.08。并
且对于同一容器高度而言,存在一个最佳的液面高度,使得此时的容器空间能得
到最大程度的利用,同时又有利于降低无效失水。
蔗糖溶液经真空冷却处理后浓度略微升高,并且在冷却过程中损失的主要为
水分。在试验容器能够有效降低无效失水的情况下,液面高度对蔗糖溶液的浓度
变化无明显影响作用。
真空冷却过程中,应合理控制捕水器表面温度,使其能够满足整个冷却过程
中捕水器所凝结水的量,但又不至于过低或过高。同时应使系统在最佳负载下运
行,以减少当量能耗。
对小型液体真空冷却装置进行了设计计算,包括对真空室结构、玻璃盖板厚
度以及真空泵进行设计选型;对系统热负荷进行计算,根据计算结果选择合适的
制冷机组,并通过实验确定了半导体制冷系统的制冷量;为实现对温度、重量、
真空室内压力的实时监测及控制,对温度传感器、压力传感器、重量传感器以及
控制系统进行了介绍及选型。
关键词:真空冷却 失水 浓度 能耗 装置设计
ABSTRACT
The advantages of vacuum cooling for liquid food include short processing
time, uniform temperature distribution and hygienic cooling performance. Despite
the above excellent advantages, vacuum cooling also has its disadvantages such as
higher amount of water loss. This weakness will lead to unfavorable effects for
quality and yield of liquid food, so it is critical and significant to reduce water loss
and ensure food quality. In order to explore methods of reducing water loss, the
concept of relative water loss rate was developed and water was used as
experimental object. Moreover, the concentration change of sucrose solution in the
process of vacuum cooling are researched.
The experiment results show that cylindrical wide mouth container does not
help to reduce water loss, the use of single baffle object such as filter or perforated
container lid can block water splash to a certain degree, and both of relative water
loss rate and ineffective water loss can be reduced. But the disadvantage is that
there is still much water splashing outside of the container from the hole of lid and
condensed water film on the surface of filter. The effect of reducing water loss is
very obvious when double baffle objects of filter and perforated container lid are
used simultaneously, the actual water loss is very close to the theoretical water
loss in this situation.
The narrow mouth container is beneficial to reduce water loss, the relative
water loss rate can reach as low as 1.08. For the same container height, there is an
optimum fluid level making the container get maximum space utilization and
meanwhile helping reduce water loss effectively.
The concentration of sucrose solution by vacuum cooling treatment increased
slightly, and loss in the cooling process is mainly water. The concentration change
of sucrose solution has no significant relationship with the liquid level in the
situation of effective reduction for the ineffective water loss.
The surface temperature of cold trap should be controlled in a reasonable
range to meet condensing load in the whole vacuum cooling process and
meanwhile has lower energy consumption. Moreover the device should be run
under optimum load in order to reduce equivalent energy consumption.
A small liquid vacuum cooling device is designed and simulated.
Component sizes and structures include vacuum chamber, glass cover-plate and
vacuum pump are illustrated. The system heat load is calculated and a suitable
refrigeration unit is selected according to the calculation results. The cooling
capacity of a semiconductor refrigeration unit is confirmed by experiment. The
related sensors and control unit are introduced and selected to achieve the function
of real-time monitoring and control for the temperature, weight and vacuum
chamber pressure.
Keywords: Vacuum Cooling, Water Loss, Concentration, Energy
Consumption, Device Design
目 录
中文摘要
ABSTRACT
第一章 绪 论 ....................................................... 1
§1.1 预冷技术分类及发展概述 ..................................... 1
§1.1.1 冷风预冷 ................................................. 1
§1.1.2 冷水预冷 ................................................. 2
§1.1.3 真空预冷 ................................................. 2
§1.1.3.1 真空预冷技术原理 .................................... 2
§1.1.3.2 真空预冷技术优缺点 .................................. 3
§1.2 液体真空冷却的应用 ......................................... 3
§1.3 真空冷却理论研究概况 ....................................... 4
§1.3.1 食品真空冷却的数学模型 ................................... 4
§1.3.2 能耗问题 ................................................. 5
§1.3.3 失水问题 ................................................. 5
§1.4 本文研究内容 ............................................... 6
§1.4.1 降低液体失水的实验研究与分析 ............................. 6
§1.4.2 真空冷却过程中的能耗研究与分析 ........................... 6
§1.4.3 小型真空冷却装置的设计 ................................... 6
第二章 液体真空冷却过程中失水率及浓度变化问题研究 .................. 7
§2.1 概述 ....................................................... 7
§2.2 实验装置介绍 ............................................... 7
§2.2.1 真空系统 ................................................. 8
§2.2.2 制冷系统和载冷系统 ....................................... 9
§2.2.3 数据采集系统 ............................................. 9
§2.2.4 电气控制系统 ............................................ 10
§2.2.5 软件界面及其功能介绍 .................................... 10
§2.3 真空冷却失水率计算依据 .................................... 11
§2.4 不同形式遮挡物对真空冷却失水率的影响 ...................... 12
§2.4.1 实验器材 ................................................ 12
§2.4.2 实验步骤 ................................................ 12
§2.4.3 实验现象 ................................................ 13
§2.4.4 试验数据记录及处理 ...................................... 15
§2.5 容器形状及液面高度对失水率的影响实验 ...................... 16
§2.5.1 实验器材 ................................................ 16
§2.5.2 试验步骤 ................................................ 16
§2.5.3 试验现象及分析 .......................................... 17
§2.6 真空冷却过程中二元溶液浓度变化问题研究 .................... 18
§2.6.1 二元溶液浓度变化计算依据 ................................ 18
§2.7 真空冷却对蔗糖溶液浓度的影响实验 .......................... 18
§2.7.1 试验器材 ................................................ 18
§2.7.2 试验步骤 ................................................ 18
§2.7.3 实验结果及分析 .......................................... 19
§2.8 液面高度对蔗糖溶液浓度的影响 .............................. 19
§2.8.1 试验器材 ................................................ 19
§2.8.2 试验步骤 ................................................ 19
§2.8.3 实验结果及分析 .......................................... 20
§2.9 本章小结 .................................................. 20
第三章 真空冷却过程中能耗问题研究 ................................. 22
§3.1 概述 ...................................................... 22
§3.2 能耗问题理论计算依据 ...................................... 22
§3.2.1 真空冷却装置系统匹配依据 ................................ 22
§3.2.2 能耗计算问题相关概念 .................................... 23
§3.3 真空泵开启温度对系统能耗的影响 ............................ 24
§3.3.1 试验器材 ................................................ 24
§3.3.2 试验步骤 ................................................ 25
§3.3.3 实验数据记录及处理 ...................................... 25
§3.4 待冷物质的量对系统能耗的影响 .............................. 26
§3.4.1 试验器材 ................................................ 26
§3.4.2 试验步骤 ................................................ 26
§3.4.3 实验数据处理及分析 ...................................... 27
§3.5 本章小结 .................................................. 27
第四章 小型真空冷却系统的设计 ..................................... 29
§4.1 设计参数及要求 ............................................ 29
§4.2 真空室结构设计计算 ........................................ 29
§4.2.1 设计压力 ................................................ 30
§4.2.2 圆筒形壳体壁厚计算 ...................................... 30
§4.2.3 真空室玻璃盖板厚度计算 .................................. 31
§4.3 真空泵计算及选型 .......................................... 32
§4.4 真空室极限真空度 .......................................... 34
§4.5 制冷系统设计 .............................................. 35
§4.5.1 系统热负荷计算 .......................................... 35
§4.5.2 制冷机组选型 ............................................ 36
§4.5.3 半导体制冷系统制冷量的确定 .............................. 37
§4.6 数据采集及控制系统选型 .................................... 42
§4.6.1 测温传感器 .............................................. 42
§4.6.2 压力传感器 .............................................. 43
§4.6.3 称重传感器 .............................................. 43
§4.6.4 控制系统 ................................................ 43
§4.7 本章小结 .................................................. 43
第五章 总结 ....................................................... 45
录 ............................................................ 47
参考文献 .......................................................... 50
在读期间公开发表的论文和承担科研项目及取得成果 .................... 53
谢 ............................................................. 54
摘要:

摘要液态类食品的真空冷却具有冷却速率快、冷却效果均匀、清洁无污染等优点,但也存在失水量较大的缺点。失水将对液态食品的品质产生不利影响,如何降低无效失水成为保证冷却后食品品质的关键。本文以相对失水率作为判断依据,并采用水作为试验对象,探索降低液体真空冷却过程中失水的方法;另外以蔗糖溶液作为实验对象,研究真空冷却对溶液浓度变化产生的影响。实验结果表明,圆柱形广口容器不利于降低失水,若使用带孔容器盖或滤网等单层遮挡物可对水分飞溅起到一定的阻挡作用,无效失水和相对失水率都有所降低,但不足之处在于仍有较多水分从盖子的小孔处或滤网表面的凝结水膜上飞溅到容器外。同时使用以上两种遮挡物的效果最佳,降低无效失水...

展开>> 收起<<
液体真空冷却的实验研究及小型真空冷却装置的设计.pdf

共58页,预览6页

还剩页未读, 继续阅读

作者:陈辉 分类:高等教育资料 价格:15积分 属性:58 页 大小:2.55MB 格式:PDF 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 58
客服
关注