干煤粉加压气流床气化炉废热锅炉合成气的流动与传热特性研究
VIP免费
摘 要
IGCC 系统中从气化炉出来的粗煤气具有较高显热,利用废热锅炉对这一部分
热量充分回收将大大提高 IGCC 发电效率。高温、高压、高腐蚀的合成气(CO 和
H2约占 85%)与传统的化工行业放热工质和传统锅炉中的烟气(CO2和N2为主)
都不同,故本文重点研究了 IGCC 系统中废锅内的合成气在高温高压下的热物性,
用以辅助废锅热力计算;并对废锅建立三维模型进行数值模拟,从而分析合成气
在废锅内的流动和放热;最后对变工况下(压力和气氛)运行的废锅合成气的流
动与传热特性进行数值模拟,并比较分析,为废锅在变工况下的运行和设计提供
基础。
针对国内某 1×250MW IGCC 示范工程,研究这种特殊的合成气在废热锅炉
内的流动换热:
1)因为合成气是高温(623K~1173K)、高压(3.1Mpa)状态,与常压下单一气体
的物性参数计算方法有一定差距,合理的热物性参数是废锅设计和数值模拟的基
础,故本文首先对高温高压下合成气热物性参数(比如黏度、导热系数、比热容、
体积、黑度等)的计算进行了讨论并寻求最佳算法。
2)根据所计算的合成气物性参数,进行高压废热锅炉的热力计算,得到辐射
和对流换热系数、总换热系数、废锅总换热量、以及各种形式的换热量所占的百
分比等。对此废锅的运行有一个整体认识。
3)建立对流废锅的三维物理模型,并选取适合的数学模型,对废锅合成气的
流动与传热特性进行数值模拟,并逐一分析其流场、温度场和离散相的停留时间
等。
4)为了研究变工况时废锅的运行情况,改变废锅的烟气气氛和操作压力分别
进行模拟,与现有工况进行比较分析,阐述变工况运行时废热锅炉内合成气流动
与传热特性发生的变化,因此,模拟的手段可有效的指导废锅的设计、改造和运
行。
关键词:IGCC 废热锅炉 对流传热 积灰
ABSTRACT
Raw synthesis gas leaving the gasifier contains a considerable number of sensible
heat in IGCC system, Efficient use of waste heat boiler to recycle the heat is essential to
prove the generating efficiency. Synthesis gas(CO and H2) which is high temperature,
high pressure and corrosive is different from traditional exothermic agent in chemical
industry and gas (CO2 and N2)of traditional boiler. So the physical parameters of high
pressure and temperature synthesis gas were researched in IGCC system, which was
used to assist the thermodynamic calculation of waste heat boiler; three-dimensional
boiler model was established and numerical simulation was calculated to research the
flow and heat transfer; at the end, the boiler with variable operating conditions
( pressure and atmosphere ) were also be calculated by numerical simulation, and the
comparative analysis will provide basis for the design and operation of waste heat boiler
in variable conditions
Taking the 1×250MW IGCC demonstration projects as the example, the flow and
heat transfer of synthesis gas in the waste heat boiler were researched:
1) Because the synthesis gas which is high temperature (623K~1173K)and high
pressure(3.1Mpa) is different from pure gas at normal pressure, the calculation of
physical parameters is also different, reasonable physical parameters are essential for
the design and numerical simulation, so the reasonable calculation methods of
parameters were researched, such as: viscosity, thermal conductivity, specific heat
capacity, volume, density et al, at the end, the reasonable methods were found for the
special synthesis gas.
2)Thermodynamic calculation was studied by the physical parameters
above-mentioned, then radiation and convection heat transfer coefficient, the total heat
transfer coefficient of waste heat boiler, as well as the percentage of heat exchange by
various forms. Then let us have an overall understanding of the waste heat boiler
operation .
3)Three-dimensional physical model of convective waste heat boiler was
established , the suitable mathematical model were selected to assist the numerical
simulation , then the flow field, temperature field and discrete phase residence time
were analyzed.
4) In order to study the operation of the waste heat boiler at variable conditions,
simulate and analyze the flow and heat transfer by changing the waste heat boiler flue
gas atmosphere and the operating pressure, the changes in the waste heat boiler were
expounded under variable conditions, Therefore simulation can be an effective means to
guide the design and modification.
Key word: IGCC, waste heat boiler, convective heat transfer, fouling.
目 录
摘 要
ABSTRACT
第一章 绪论 .................................................................................................................. 1
§1.1 课题研究背景 ..................................................................................................... 1
§1.2 国内外气化技术的发展和研究现状 ................................................................. 3
§1.2.1 典型煤气化技术 ........................................................................................... 3
§1.2.2 国内外气流床气化炉的发展和研究现状 ................................................... 4
§1.3 国内外废热锅炉的发展和研究现状 ................................................................. 5
§1.3.1 废热锅炉的选型和发展 ............................................................................... 5
§1.3.2 国内外气流床废锅流程的发展和研究现状 ............................................... 6
第二章 干煤粉加压气流床气化炉废热锅炉的热力计算 .......................................... 11
§2.1 合成气物性参数的计算 ................................................................................... 12
§2.1.1 高温、高压下合成气黏度的计算 ............................................................. 12
§2.1.2 高温、高压下合成气导热系数的计算 ..................................................... 13
§2.1.3 高温、高压下合成气定压比热容的计算 ................................................. 15
§2.1.4 高温、高压下合成气体积的计算 ............................................................. 15
§2.1.5 高温、高压下合成气黑度的计算 ............................................................. 16
§2.2 废热锅炉的热力计算 ....................................................................................... 17
§2.3 本章小结 ........................................................................................................... 26
第三章 干煤粉加压气流床气化炉废热锅炉合成气流动与传热特性的数值模拟 27
§3.1 物理模型的建立和数学模型的分析 ............................................................... 27
§3.1.1 对流废热锅炉物理模型的建立 ................................................................. 27
§3.1.2 对流废热锅炉数学模型的分析 ................................................................. 28
§3.1.3 网格划分和模型求解 ................................................................................. 30
§3.2 模拟结果分析 ................................................................................................... 31
§3.2.1 流场分析 ..................................................................................................... 31
§3.2.2 温度场分析 ................................................................................................. 33
§3.2.3 离散相分析 ................................................................................................. 36
§3.3 本章小结 ........................................................................................................... 39
第四章 废热锅炉变工况运行时合成气流动与传热特性对比 .................................. 41
§4.1 CO2和N2气氛下废热锅炉合成气流动与传热特性的数值模拟 ................... 41
§4.1.1 两种气氛下数值模拟的比较分析 ............................................................. 42
§4.1.2 分析结论 ..................................................................................................... 45
§4.2 常压 CO 和H2气氛下废热锅炉合成气流动与传热特性的数值模拟 .......... 45
§4.2.1 常压、高压下数值模拟的比较分析 ......................................................... 45
§4.2.2 分析结论 ..................................................................................................... 53
第五章 结论与展望 .................................................................................................... 55
§5.1 全文总结 ........................................................................................................... 55
§5.2 本文创新点 ....................................................................................................... 56
§5.3 工作展望 ........................................................................................................... 56
参考文献 ........................................................................................................................ 57
在读期间公开发表的论文和承担科研项目及取得成果 ............................................ 61
致 谢 .............................................................................................................................. 62
第一章 绪论
1
第一章 绪论
§1.1 课题研究背景
随着近年来经济的持续高速发展,社会对电力的需求以每年 15%的速度增长,
能源短缺和环境污染日益严峻已成为限制我国经济高速发展的主要因素。煤炭在
我国总能源消耗中占有主导地位,其中约有一半是用来发电,目前新建的电厂中
仍有 80%是以煤炭为原料的火力发电厂[1]。图 1-1 列出了我国历年火力发电在总发
电量中的比例,由图可知,2009 年底,我国的发电装机总量为 8.7 亿KW,火力发
电占 74.6%,约 6.7 亿KW,而煤炭在火电发电中的比例又高达 95%。我国单位能
源的消耗量远远高于西方工业发达国家,平均的煤炭利用率只有 30%左右,比国
际水平低 10 个百分点,所以煤炭的高效清洁利用是可持续发展战略对电力工业的
必然要求。
图1-1 我国历年火力发电在总发电量中的比例
Fig.1-1 The ratio of thermal plant in total electricity capacity over the years
煤炭气化技术有着悠久的历史,尤其是 20 世纪 70 年代石油危机的出现,世
界各国广泛开展了煤炭气化技术的研究[2]。20 世纪 80 年代末,结合煤炭气化技术,
IGCC(integrated coal gasification combined cycle)技术应运而生。随着美国 Cool
Water 电站整体煤气化联合循环示范项目成功后,发达国家开始筹建大型的 IGCC
示范电站。IGCC 中,空气的分离技术、煤气化技术、煤气净化技术、燃气轮机联
合发电技术充分实现了煤化学能的梯级利用,使其发展成为高效和环保的发电技
术,被世界上公认为最清洁的燃煤发电技术[3~4],从根本上解决了我国燃煤电站效
率低下和污染严重的问题。图 1-2 为典型 IGCC 系统图。目前全世界总共有装机总
摘要:
展开>>
收起<<
摘要IGCC系统中从气化炉出来的粗煤气具有较高显热,利用废热锅炉对这一部分热量充分回收将大大提高IGCC发电效率。高温、高压、高腐蚀的合成气(CO和H2约占85%)与传统的化工行业放热工质和传统锅炉中的烟气(CO2和N2为主)都不同,故本文重点研究了IGCC系统中废锅内的合成气在高温高压下的热物性,用以辅助废锅热力计算;并对废锅建立三维模型进行数值模拟,从而分析合成气在废锅内的流动和放热;最后对变工况下(压力和气氛)运行的废锅合成气的流动与传热特性进行数值模拟,并比较分析,为废锅在变工况下的运行和设计提供基础。针对国内某1×250MWIGCC示范工程,研究这种特殊的合成气在废热锅炉内的流动换热...
相关推荐
作者:赵德峰
分类:高等教育资料
价格:15积分
属性:65 页
大小:3.25MB
格式:PDF
时间:2024-11-11