鼓泡式反应器高径比对氨法烟气脱碳性能的影响

VIP免费
3.0 赵德峰 2024-11-11 6 4 899.81KB 64 页 15积分
侵权投诉
摘要
统计,全球地面气温明显,年均升高 0.6 ±0.2其中类活动所产
体是变暖要原之一化石料燃产物中
CO2候变暖已重要问题之一何高制大
CO2国内外研究热点氨水溶液吸收效率能耗
吸收大和产物资源用等优点备受泡塔具
接触大、传质传热效率简单定等特点, 广泛应用于
领域目前国内学者领域都诸多研究关于鼓泡反应
器结尤其是高径比CO2吸收性能的影研究甚少,本文
研究论,研究鼓泡反应器径比(H/D)吸收燃烧气中 CO2
。本实验析讨论了反应器及操如氨浓度气体
CO2分数脱碳吸收性能的影
首先,本文研究气体流量反应CO2分数和气体流量条
径比0.932.043.98 鼓泡反应器吸收特性实验
数据分析比较鼓泡反应器径比除燃烧气中 CO2性能
实验结果表明实验脱碳效率随 H/D 而增大,脱碳效率
大可7%左右但氨除燃烧气中 CO2吸收效率增加幅度随H/D
减小。影CO2吸收效率对其吸收性能进行综合
,本文综合人的理论据,研究H/D 同的鼓泡反应
氨水质量分数、气体流速CO2分数除燃
气中 CO2吸收性能的影实验结果表明CO2吸收效率随氨水
浓度及反应升高而增大,加幅6.4%5.8%气体流速
CO2减小其变化4.6%4.9%在不CO2
吸收效率变化同。
本文实验观察实验结论,实验数据,得出不
氨水浓度及气体流量CO2吸收速率,并阿伦尼乌斯公式计氨水吸收
CO2反应活化Ea=32.169 KJ/mol A=2.43×104 dm3/mol.s。, 得出
反应
词:CO2 燃烧 应器 高径比 作条件 效率
ABSTRACT
According to the statistics, the global surface temperature has been increased
significantly with an average annual rise of 0.6±0.2. Global warming has become a
severe experimental issue. The greenhouse gas produced by human activities make a
significant contribution to global warming, especially CO2 emission by fossil fuel
combustion. Thus, effective and economical capture of CO2 has become a burning field
of research all over the world. Aqueous ammonia has been widely concerned for its
advantages of high absorption efficiency, large absorption capability, low energy
consumption, resource-oriented utilization, etc. Bubble column reactor has the
advantages of large gas-liquid contact area, high mass and heat transfer efficiencies,
simple structure and stable operation, therefore has been widely applied in exhaust gas
treatment. At present, many researches in related field were carried out by domestic and
foreign scholars. However, few of them were focused on the effect of bubble column
reactor structure especially height to diameter ratio on CO2 absorption properties. This
work investigated the impact of height to diameter ratio on performance of CO2
absorption from flue gas combustion by ammonia. The influences of operating
parameters such as ammonia concentration, gas flow rate, operating temperature and
CO2 concentration are also studied.
Firstly, the absorption characteristics of a series of bubble column reactors with
various liquid height-to-diameter ratios (H/D=0.93, 2.04 and 3.98) are investigated
under certain reaction conditions. The influence of height-to-diameter ratio on
absorption performance of CO2 removal from combustion flue gas by aqueous ammonia
was discussed by comparison and analysis of experimental data. Experimental results
show that under the same experimental conditions, the removal efficiency increases
with H/D increasing; the maximum CO2 capture efficiency can increase by up to 7%.
But the increment of absorption efficiency decreases as the H/D increases. There are
many factors that affect the CO2 absorption efficiency, the absorption performance
should be comprehensively analyzed.
Secondly, this work investigate the influence of different reaction parameters, e.g.,
ammonia concentration, gas flow rate, reaction temperature and CO2 concentration on
performance of CO2 absorption by ammonia from combustion flue gas. Experimental
results show that the maximum CO2 capture efficiency has positive correlation with the
ammonia concentration and reaction temperature whereas has negative correlation with
the CO2 concentration and gas flow velocity. The increment is 6.4%, 5.8%, 4.9% and
4.6, respectively. The variation of the maximum CO2 absorption efficiency are different
under different reaction conditions.
Finally, based on experimental observation of flow field and qualitative analysis
of experimental results, the CO2 absorption rates under different ammonia
concentrations and gas flow rate are calculated. This work also calculate the activation
energy and pre-exponential factor of ammonia-CO2 reaction according to the Arrhenius
equation, thereby gaining the expression of chemical reaction constantEa=32.169
KJ/mol.
Keywords: carbon dioxide, combustion, bubble column reactor, height to diameter
ratio, operating parameters, absorption efficiency
目录
中文摘要
ABSTRACT
................................................................................................................ 1
1.1 球温室效应及 .................................................................................. 1
1.2 燃烧CO2排放特性 ................................................................................. 1
1.3 CO2捕捉与封CCS ........................................................................... 2
1.3.1 CO2捕捉 ............................................................................................ 2
1.3.2 CO2 ............................................................................................ 4
1.4 本文的研究的、内容和方法 ...................................................................... 5
1.4.1 研究 ............................................................................................... 5
1.4.2 研究内容和方法 ................................................................................... 5
1.5 章小 ........................................................................................................ 6
第二章 吸收 CO2研究现状 ........................................................................... 7
2.1 反应器的影 ......................................................................................... 7
2.2 响吸收效率 .................................................................................... 12
2.2.1 吸收浓度 .................................................................................. 12
2.2.2 吸收流量 .................................................................................. 13
2.2.3 气体流量 ..................................................................................... 13
2.2.4 CO2浓度的影 .................................................................................. 14
2.2.5 反应 ...................................................................................... 15
2.3 吸收的影 ........................................................................................ 15
2.3.1 醇胺溶液吸收 CO2 .............................................................................. 16
2.3.2 NaOH 溶液吸收 CO2 ........................................................................... 16
2.3.3 氨水吸收 CO2 ...................................................................................... 17
2.4 章小 ...................................................................................................... 18
吸收 CO2相反应 ...................................................... 19
3.1 液相传质模型 ....................................................................................... 19
3.1.1 双膜理论模型 ...................................................................................... 19
3.1.2 溶质渗透模型 ..................................................................................... 21
3.1.3 表面更新模型 ...................................................................................... 21
3.2 双膜理论有关反应 .................................................................... 22
3.2.1 气体溶质 ..................................................................................... 23
3.2.2 吸收速率 ............................................................................................. 24
3.2.3 液相传质 ...................................................................................... 24
3.2.4 相传质 ...................................................................................... 25
3.2.5 ............................................................................................. 26
3.3 章小 ...................................................................................................... 26
第四章 鼓泡吸收 CO2实验方法 .................................................. 27
4.1 实验 ...................................................................................................... 27
4. 2 实验装置 ..................................................................................................... 30
4.3 实验 ...................................................................................................... 31
4.4 实验 ...................................................................................................... 32
4.5 场测试内容方法 ................................................................................... 33
4.6 实验结方法 ....................................................................................... 34
4.6.1 CO2吸收效率 ...................................................................................... 34
4.6.2 CO2 .................................................................................. 34
4.6.3 氨水吸收 CO2反应速率 ..................................................................... 34
4.7 章小 ...................................................................................................... 35
第五章 径比鼓泡反应器形态 ............................................................ 36
5.1 鼓泡反应器液流形态 ................................................................ 36
5.2 径比流场形态比较 ........................................................................... 39
5.3 量流场形态比较 ................................................................................ 40
5.4 章小 ...................................................................................................... 40
第六章 吸收性能的影 ......................................................................................... 41
6.1 鼓泡反应器径比脱碳性能 ................................................ 41
6.2 脱碳性能..................................................................... 41
6.2.1 氨水浓度的影 ................................................................................. 42
6.2.2 流量的影 ............................................................................... 42
6.2.3 CO2分数的影 ........................................................................ 43
6.2.4 反应的影 ............................................................................... 44
6.3 反应速率 ........................................................................................ 45
6.4 CO2吸收反应特性 .......................................................................... 47
第七章 与展望 ................................................................................................ 52
7.1 .............................................................................................................. 52
7.2 展望 ............................................................................................................... 52
1
第一章 绪论
1.1 温室其影响
统计,全球地面温明显均升高 0.6±0.2[1]其中类活动
所产生气体是候变暖原因之一其是石燃燃烧产
物中CO2变暖已重要问题之一何高
气中二氧国内外研究热点
温室气体中一能吸收经地面射后太阳辐射气体
二氧甲烷氟氯烃臭氧30 多种气体它们使地球表面温升高
温室太阳辐射用于温室其中《京书》
规定气体,分二氧甲烷亚氮六氟
化物、全
温室效应又称花房效应温室气体使太阳发出短波辐射地面
地表放射长波辐射吸收使得地表气温升高
个过温室
温室应而的全球温球生态系会环境济都
产生不的影主要表方面[2]
a. 粮食,人粮食吃紧
b. 面不
c. 计物种相继灭绝
d. 平衡遭到严破坏
温室体得不理的制,温室效应加强,全球温也必
带来问题更加温室气体尤其是 CO2排放是一
亟待的全性问题
1.2 烧烟气 CO2放特性
由化石燃料燃烧所产生CO2温室效应已经为一个
环境学、政治问题[3]CO2有机燃料燃烧主要产物
温室效应重要原因之一温室气体[4]。全 世界排放CO2
50%以上来自化石燃料燃烧产物煤炭燃烧产物中 CO2,大
天然1.36 1.61 [5]。据研究表明存的电CO2排放
106 亿吨其中燃放约 76 亿吨电行业总排放72%左右
[6]能源特点煤炭燃烧能源
摘要:

摘要据统计,全球地面气温明显上升,年均升高0.6℃±0.2℃。其中人类活动所产生的温室气体是导致全球气候变暖的主要原因之一,尤其是化石燃料燃烧产物中的CO2。气候变暖已成为全球关注的重要问题之一,如何高效、经济地控制大气中的CO2含量已成为国内外研究的热点。氨水溶液由于其吸收效率高、再生能耗低、吸收容量大和产物可资源化利用等优点而备受关注。另外,鼓泡塔具有气液接触面积大、传质和传热效率高、结构简单、操作稳定等特点,而被广泛应用于废气处理领域。目前,国内外学者在相关领域都做了诸多研究,但关于鼓泡式反应器结构尤其是高径比对CO2吸收性能的影响的相关研究甚少。为此,本文基于前人研究结论,研究讨论鼓泡...

展开>> 收起<<
鼓泡式反应器高径比对氨法烟气脱碳性能的影响.pdf

共64页,预览7页

还剩页未读, 继续阅读

作者:赵德峰 分类:高等教育资料 价格:15积分 属性:64 页 大小:899.81KB 格式:PDF 时间:2024-11-11

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 64
客服
关注