矿井乏风氧化技术及实验研究

VIP免费
3.0 赵德峰 2024-11-11 25 4 3.27MB 73 页 15积分
侵权投诉
长期以来,我国是以煤炭为主要能源的国家。在煤的开采过程中产生了大量
的煤层气些煤层气中含有大量的甲烷,其中大部分(70%左右)以矿井乏
风的形式排放到大气中。甲烷的温室效应相当于二氧化碳21 倍,臭氧层的破
坏能力是二氧化碳的 7倍。根据有关数据显示,我国每年通过矿井乏排入大
的甲烷总量约为 120170 亿m3,造成大量能源浪费,同时也加剧了温室效应
这些矿井乏风中的甲烷具有浓度低 (其体积浓度<1%)集技术难度大、总排放
量大、传统燃烧方式很难处理等特目前,绝大多数的处理方式就直接排空
造成了严重的环境污染和温室效应,给我国当前的节能和环保工作带来了很大
压力。
本文针对矿井乏风中的低浓度甲烷,做了以下几个方面的工作:
1理论研究低浓度甲烷的燃烧界限通过建立热力学模型推导低浓甲烷
<1%)与空气混合物的燃烧临界火点温度,借助高温空气燃烧技术原理,
讨形成处理矿井乏风氧化装置的理论基础。
2参考阀门切换式蓄热式换热器的相关原理假设蓄热室为氧化床利用传
热学理论,推导乏风氧化处理装置的热力计算公式,为氧化床的设计提供依据
根据计算结果,确定乏风处理量为 800m3/h 氧化装置为搭建
乏风氧化实验装置
3.依据热力计算结果,设计并搭建 800m3/h 氧化实验装置利用该实验装
置,测试氧化床冷态和热态下的阻力同时将实验结果无量纲化,拟合无量纲
化关系式,将其用于模化设计乏风处理量80000m3/h
4乏风80000m3/h 氧化装置的成本和收益。以三台
乏风处理80000m3/h 化装置并联、发电量5000kW
研究结果证明,推导出来的热力计算公式,对氧化装置的设计和建造具有
指导意义。阻力计算和实验结果对比证明,冷态下阻力的无量纲公式可以用于
热态情况下风机设备矿井
风发电站项目在我国大有市场前景
关键词:矿井乏风 氧化床 热力计算 阻力实验研究 经济性分析
ABSTRACT
For a long time, coal has been the main energy source of China. In the coal mining
process, huge amount of coal-bed gas is generated. The gas contains a lot of methane
(a relatively potent greenhouse gas), most of which (about 70%) is discharging into the
atmosphere as Mine Ventilation Air (MVA). According to statistics, the annual methane
emission as MVA in China amount of 12 to 17 billion m3, which has not only caused
great waste of energy, but also significantly contributed to the greenhouse effect.
Mine Ventilation Air (MVA) has the charaeteristies of low methane concentration
and huge volume. It is hard to deal with the conventional combustion. Currently, the
method to deal with it is discharging MVA into atmosphere .It is a great damage and
has as significant green house effect to the environment. It brought great pressure to
the energy-saving and environmental protection work in our courtry.
In this paper, in order to get rid of the low methane concentration of MVA, do the
following several aspects:
1. Theoretical study low concentrations of methane combustion boundaries, through
thermodynamic model to derive low concentrations methane (<1%) and air mixture
combustion critical ignition temperature, with high temperature air combustion
technology principle to explore the formation process MVA oxidization device
theoretical basis.
2. It refer to valve switching regenerative heat exchanger relevant principles,
assuming an oxidation regenerator bed and using of heat transfer theory, deduce the
oxidation treatment unit derived thermodynamic calculation formula which is designed
to provide the basis for the oxidation bed. According to the calculation results, It
determine the treatment capacity of 800m3/h oxidation unit core equipment oxidation
bed size parameters for the structures established MVA oxidation experimental device
basis.
3. According to results of thermodynamic calculation, It design and build a 800 m3/h
of experimental setup. It tests bed cold and hot oxidation resistance state in this
experimental setup, while the dimensionless experimental results are base to establish
the design and manufacture of 80000m3/h oxidation unit.
4. It analysis the single MVA capacity 80000 m3/h oxidation device costs and
benefits. In three MVA capacity 80000 m3/h oxidation devices in parallel, the lack of
generating capacity of 5000kW wind power plant as a case of simple
The results show that the heat derived formulas is significant for the design and
construction of oxidation device. Resistance calculation and experimental results show
that the cold state resistance dimensionless equations can be used for the case of hot air
blower equipment selection. Acoording to analysis the application mode, It prove that
MVA power plant project have great market prospects in our courtry.
Key words: MVA, oxidation bed, Thermodynamic calculation, Experimental
study of resistance, Economic Analysis
文摘
ABSTRACT
第一章 绪论 ..................................................................................................................... 1
§1.1 研究背景及意义.................................................................................................. 1
§1.1.1 研究背景 ...................................................................................................... 1
§1.1.2 研究意义 ...................................................................................................... 3
§1.2 国内外矿井乏风处理技术研究进 .............................................................. 4
§1.2.1 矿井乏风作为主燃料利用方式 .............................................................. 5
§1.2.2 矿井乏风作为辅燃料利用方式 ............................................................ 10
§1.3 本文研究目的和内 ........................................................................................11
第二章 矿井乏风热氧化理论和装 ......................................................................... 12
§2.1 氧化理论基础 .................................................................................................... 12
§2.1.1 甲烷氧化理论 ............................................................................................ 12
§2.1.2 矿井乏风的氧化 ........................................................................................ 12
§2.1.3 热力着火模型 ............................................................................................ 13
§2.2 高温空气燃烧技术理 ................................................................................... 17
§2.2.1 高温空气燃烧技术的由来及发 ........................................................... 17
§2.2.2 HTAC 技术基本原 ................................................................................. 18
§2.2.3 TREE 技术基本工作原理 ......................................................................... 19
§2.3 乏风氧化装置模式结 ................................................................................... 19
§2.3.1 卧式结构和立式结................................................................................. 20
§2.3.2 热量回收方式的比较................................................................................ 21
第三章 氧化床热力计算公式推导及其尺寸设计..................................................... 23
§3.1 公式推导 ............................................................................................................ 24
§3.2 计算初始条件确定 ........................................................................................... 31
§3.3 计算结果汇总 .................................................................................................... 32
§3.4 分析 .................................................................................................................... 32
§3.4.1 流量对热力计算结果的影响 ................................................................... 33
§3.4.2 氧化床截面积对热力计算结果的影响 .................................................. 34
§3.5 本章小结 ............................................................................................................ 36
第四章 矿井乏风氧化装置阻力实验研究及分析..................................................... 37
§4.1 氧化床阻力理论计算 ....................................................................................... 37
§4.2 实验装置 ............................................................................................................ 40
§4.2.1 蓄热式氧化床 ............................................................................................ 42
§4.2.2 换向系统 .................................................................................................... 43
§4.2.3 管路系统 .................................................................................................... 43
§4.2.4 测控系统 .................................................................................................... 44
§4.2.5 实验流程 .................................................................................................... 44
§4.3 实验结果及分析................................................................................................ 45
§4.3.1 流量对氧化床阻力的影 ....................................................................... 45
§4.3.2 蜂窝体高度对氧化床阻力的影 ........................................................... 47
§4.4 阻力计算值与实验值对比分....................................................................... 48
§4.5 无量纲分析 ........................................................................................................ 51
§4.6 热态阻力实验 .................................................................................................... 53
§4.6.1 外加热热源功率及加热速率的计算....................................................... 53
§4.6.2 热态实验结果及分析................................................................................ 55
§4.7 无量纲关系式应用 ........................................................................................... 57
§4.8 本章小结 ............................................................................................................ 58
第五章 矿井乏风氧化装置技术经济性分 ............................................................. 59
§5.1 氧化装置收益和成本分析 ............................................................................... 59
§5.1.1 回收热量收益 ............................................................................................ 59
§5.1.2 CDM 收益 ................................................................................................... 60
§5.1.3 氧化装置成本分 .................................................................................... 61
§5.2 乏风氧化发电项目经济性分....................................................................... 62
§5.3 本章小结 ............................................................................................................ 63
第六章 结论和建议....................................................................................................... 64
§6.1 结论 .................................................................................................................... 64
§6.2 建议 .................................................................................................................... 64
参考文献 ......................................................................................................................... 65
在读期间公开发表的论文和承担科研项目及得成 .......................................... 69
............................................................................................................................. 70
第一章 绪论
1
第一章 绪论
§1.1 研究背景及意义
§1.1.1 研究背景
甲烷CH4天然气沼气油田气及煤矿坑道气的主要成分是重要的燃
和化料。大气环境而言,甲烷也是主要温室气体之一,其全球变暖
能值Global Warming PotentialGWPCO221 倍;同时甲烷也被认为
对臭氧层破坏有重要影响的物质,其臭氧层破坏潜能Ozone Depletion Potential
ODPCO27倍。去自向环境空气排放
甲烷主要煤炭和油、气的开采过程,自然水体受生活污水和工业废水的污
染以及农业畜牧活动引起。估算,在中国,甲烷排放的 90%产生于煤炭开采
过程70%左右估计矿甲烷逸出
量的 64%统计数据表明国每年矿井乏风排放甲烷约为 120170 亿Nm3
且逐年增加[1]1-1 矿井
1-1 我国矿井乏风的排放量
在煤矿开采的过程中,矿井出风口排出的煤矿通风,其中含有一浓度
甲烷(体积浓度<1%(Mine Ventilation Air, MVA)俗称
每年,全世界因煤矿开采而排入大气中的甲烷总量约为 2500 万吨,并且
随着煤炭产量的增加,其总量呈越来越预计到 2015 甲烷排放量
将增至 3000 万吨,其中 70%来自甲烷浓度低于 1%矿井乏风[2]。这部分煤
甲烷由于浓度太低,从技术层面上看,其利用难度大;从经济面上看,其
利用成本高。目前,世界上几乎所有煤矿的井乏风都未进行回收处理,而是
直接排这些甲烷以乏风的形式直接排放到大气中,一方面造成了大量
矿井乏风氧化技术及实验研究
2
有限矿井乏风排出甲烷相当于 3370
万吨标准煤;另一方面造成了大气污染,加剧环境的温室效应因此,合理
回收低浓度甲烷有节能和环保双重意义。
随着中国经济和电力供应需求的快速增长,煤炭开采量将逐年增与之
相应矿井乏风的总放量也将不断增大,种状况势必进一步加剧环境污染
同时也带来巨大的能源浪费,煤炭产量与煤矿甲烷排放关系如图 1-2 所示
1-2 中国煤炭产量与煤矿甲烷排放关系
正常情况下,矿井乏风中的甲浓度相当低,依据煤矿安全生产规范
0.75%,最1.0%
矿井乏风有以下 4个特点[3]
1. 甲烷浓度低。煤矿安全规的要求在煤矿出风口处甲烷
小于 0.75%。为了保证一定的安全系数,我国煤矿矿井出口处的甲烷体积分数
一般在 0.50%左右有些低瓦斯矿井排出的矿井乏风中的甲烷浓度会更低。
2. 排放大。对于某些瓦斯矿井 其 矿 井排 风 口的出 风 量一般在
6×1049×104m3/h尽管排出的矿井甲烷浓度很低甲烷
一般高瓦斯矿井口每甲烷排放107m3
3. 甲烷度波动范围大矿井乏风中的甲烷浓度经常受到矿井下煤层气含
量、煤炭开采量、通风量等各种因素的影响,导致甲烷浓度变化幅大。
4. 乏风成分简单。井通风主要是为井下工作人员提供适合生存的新鲜
空气于煤矿作业和人员、械的工作,流中氧气含量会减少除此之外,
还可能会含有微量的一氧化碳、硫化氢等有害气体,其他成分基本与大气一样。
乏风的温度、湿度及固体颗粒物含量比空气略高。
上述特点定了矿井乏风无法采用传统燃烧方式加以利用。因此研制和
开发矿井乏风氧化技术和装置已成为当前环保和能源行业技术发一大热点问
题。
第一章 绪论
3
§1.1.2 研究意义
矿井乏风处理和利用技术的研究,对加快煤矿井乏风这一新能源的开发
利用,具有以下的研究意义[4]
1. 符合国家节能减排政策
党中央、国务院高度重视节能减排工作,把环境保和节约资源作为我国
的基本国策,实行节能减排是党中央国务院为贯彻落实科学发展观,实现我国
经济增长方式根本性转变而提出的一项重大战略任务。
依据国家发改委、环保总局联合下达的《关于印发煤炭工业节能减排工作
意见的通知》(发改环资[2007]1456 号)精神,为贯彻和落实科发展观,加
快推进节能减排工作的开展,促进经济增长方式转变,按照《国务院关于加强
节能减排工作的决定》(国[2006]28 号文)、《国务院关于印节能减排综
合性工作方案的通知》(国[2007]15
国家环保总局等有关部门和省级人民政府,在重点行业、重点领域组织开展节
能减排工作[5]
每年我国通过矿井乏风排入大气中甲烷总量120170 亿m3
几乎与西气东输的总天然气量相当;这就好比每年有 10001500 万吨原油或
20003000 多万吨煤炭被白白浪费掉,其数量差不多是 35万千瓦火电
发电机组一年的用煤量[6]因此,如果能将这些矿井乏风中的甲烷氧化并充分
利用,节能效果将十分显著
2. 国际国内环境保护的要求
众所周知,温室效应、臭氧层破坏、酸雨是当今世界影响大气的三环境
1997 12 月,149 国家和地区的代表在日本东京召《联合
气候变化框架公约》缔约方第三次会议,通过了旨在限制发达国家温室气体排
放量以抑制全球变暖的《京都议定书》,《京都议定书》规定,到 2010 年,
所 有发 达 国 家放 的 二 氧化 碳 等 6温室气体的数量,要比 1990 减 少
5.2%,发展中国家没有减排义务[7]2005 216 《京都议书》正式生
效。作为《联合国气候变化框架公约》的一个最主要的具体成果《京都议定
书》的生效在国际环保领域具有里程碑式的意义。
每年有 120170 亿3的纯甲烷通过矿井乏风排空
大气环境中排放约 2亿吨二氧化碳。如果能够全部实现清洁排放,将完成我国
提出的到 2015 年减10 亿吨二氧化碳目标的 1/5矿井乏
甲烷排放量占整个工业生产过程中排放甲烷总量的 1/3同时也是我国年总
温室气体排放总量的近 1/3故实现矿井乏风的清洁排放,其环保效益十分明
摘要:

摘要长期以来,我国是以煤炭为主要能源的国家。在煤的开采过程中产生了大量的煤层气,这些煤层气中含有大量的甲烷,其中大部分(占70%左右)以矿井乏风的形式排放到大气中。甲烷的温室效应相当于二氧化碳的21倍,对臭氧层的破坏能力是二氧化碳的7倍。根据有关数据显示,我国每年通过矿井乏风排入大气的甲烷总量约为120~170亿m3,造成大量能源浪费,同时也加剧了温室效应。这些矿井乏风中的甲烷具有浓度低(其体积浓度

展开>> 收起<<
矿井乏风氧化技术及实验研究.pdf

共73页,预览8页

还剩页未读, 继续阅读

作者:赵德峰 分类:高等教育资料 价格:15积分 属性:73 页 大小:3.27MB 格式:PDF 时间:2024-11-11

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 73
客服
关注