矿井乏风氧化技术及实验研究

VIP免费
摘 要
长期以来,我国是以煤炭为主要能源的国家。在煤的开采过程中产生了大量
的煤层气,这些煤层气中含有大量的甲烷,其中大部分(占 70%左右)以矿井乏
风的形式排放到大气中。甲烷的温室效应相当于二氧化碳的 21 倍,对臭氧层的破
坏能力是二氧化碳的 7倍。根据有关数据显示,我国每年通过矿井乏风排入大气
的甲烷总量约为 120~170 亿m3,造成大量能源浪费,同时也加剧了温室效应。
这些矿井乏风中的甲烷具有浓度低 (其体积浓度<1%)、富集技术难度大、总排放
量大、传统燃烧方式很难处理等特点。目前,绝大多数的处理方式就是直接排空,
造成了严重的环境污染和温室效应,给我国当前的节能和环保工作带来了很大的
压力。
本文针对矿井乏风中的低浓度甲烷,做了以下几个方面的工作:
1.理论研究低浓度甲烷的燃烧界限,通过建立热力学模型,推导低浓度甲烷
(<1%)与空气混合物的燃烧临界着火点温度,借助高温空气燃烧技术原理,探
讨形成处理矿井乏风氧化装置的理论基础。
2.参考阀门切换式蓄热式换热器的相关原理,假设蓄热室为氧化床,利用传
热学理论,推导乏风氧化处理装置的热力计算公式,为氧化床的设计提供依据。
根据计算结果,确定乏风处理量为 800m3/h 氧化装置的氧化床尺寸参数,为搭建
乏风氧化实验装置做设计计算。
3.依据热力计算结果,设计并搭建 800m3/h 氧化实验装置。利用该实验装
置,测试氧化床冷态和热态下的阻力,同时将实验结果无量纲化,拟合无量纲
化关系式,将其用于模化设计乏风处理量为 80000m3/h 的氧化装置。
4.简要分析单台乏风处理量 80000m3/h 氧化装置的成本和收益。以三台
乏风处理量 80000m3/h 氧化装置并联、发电量为 5000kW 的乏风发电站为案例,
对其技术经济性做了简要的分析。
研究结果证明,推导出来的热力计算公式,对氧化装置的设计和建造具有
指导意义。阻力计算和实验结果对比证明,冷态下阻力的无量纲公式可以用于
热态情况下风机设备的选型。通过对乏风氧化装置经济性的分析,证明矿井乏
风发电站项目在我国大有市场前景。
关键词:矿井乏风 氧化床 热力计算 阻力实验研究 经济性分析
ABSTRACT
For a long time, coal has been the main energy source of China. In the coal mining
process, huge amount of coal-bed gas is generated. The gas contains a lot of methane
(a relatively potent greenhouse gas), most of which (about 70%) is discharging into the
atmosphere as Mine Ventilation Air (MVA). According to statistics, the annual methane
emission as MVA in China amount of 12 to 17 billion m3, which has not only caused
great waste of energy, but also significantly contributed to the greenhouse effect.
Mine Ventilation Air (MVA) has the charaeteristies of low methane concentration
and huge volume. It is hard to deal with the conventional combustion. Currently, the
method to deal with it is discharging MVA into atmosphere .It is a great damage and
has as significant green house effect to the environment. It brought great pressure to
the energy-saving and environmental protection work in our courtry.
In this paper, in order to get rid of the low methane concentration of MVA, do the
following several aspects:
1. Theoretical study low concentrations of methane combustion boundaries, through
thermodynamic model to derive low concentrations methane (<1%) and air mixture
combustion critical ignition temperature, with high temperature air combustion
technology principle to explore the formation process MVA oxidization device
theoretical basis.
2. It refer to valve switching regenerative heat exchanger relevant principles,
assuming an oxidation regenerator bed and using of heat transfer theory, deduce the
oxidation treatment unit derived thermodynamic calculation formula which is designed
to provide the basis for the oxidation bed. According to the calculation results, It
determine the treatment capacity of 800m3/h oxidation unit core equipment oxidation
bed size parameters for the structures established MVA oxidation experimental device
basis.
3. According to results of thermodynamic calculation, It design and build a 800 m3/h
of experimental setup. It tests bed cold and hot oxidation resistance state in this
experimental setup, while the dimensionless experimental results are base to establish
the design and manufacture of 80000m3/h oxidation unit.
4. It analysis the single MVA capacity 80000 m3/h oxidation device costs and
benefits. In three MVA capacity 80000 m3/h oxidation devices in parallel, the lack of
generating capacity of 5000kW wind power plant as a case of simple。
The results show that the heat derived formulas is significant for the design and
construction of oxidation device. Resistance calculation and experimental results show
that the cold state resistance dimensionless equations can be used for the case of hot air
blower equipment selection. Acoording to analysis the application mode, It prove that
MVA power plant project have great market prospects in our courtry.
Key words: MVA, oxidation bed, Thermodynamic calculation, Experimental
study of resistance, Economic Analysis
目 录
中文摘要
ABSTRACT
第一章 绪论 ..................................................................................................................... 1
§1.1 研究背景及意义.................................................................................................. 1
§1.1.1 研究背景 ...................................................................................................... 1
§1.1.2 研究意义 ...................................................................................................... 3
§1.2 国内外矿井乏风处理技术研究进展 .............................................................. 4
§1.2.1 矿井乏风作为主燃料利用方式 .............................................................. 5
§1.2.2 矿井乏风作为辅燃料利用方式 ............................................................ 10
§1.3 本文研究目的和内容 ........................................................................................11
第二章 矿井乏风热氧化理论和装置 ......................................................................... 12
§2.1 氧化理论基础 .................................................................................................... 12
§2.1.1 甲烷氧化理论 ............................................................................................ 12
§2.1.2 矿井乏风的氧化 ........................................................................................ 12
§2.1.3 热力着火模型 ............................................................................................ 13
§2.2 高温空气燃烧技术理论 ................................................................................... 17
§2.2.1 高温空气燃烧技术的由来及发展 ........................................................... 17
§2.2.2 HTAC 技术基本原理 ................................................................................. 18
§2.2.3 TREE 技术基本工作原理 ......................................................................... 19
§2.3 乏风氧化装置模式结构 ................................................................................... 19
§2.3.1 卧式结构和立式结构................................................................................. 20
§2.3.2 热量回收方式的比较................................................................................ 21
第三章 氧化床热力计算公式推导及其尺寸设计..................................................... 23
§3.1 公式推导 ............................................................................................................ 24
§3.2 计算初始条件确定 ........................................................................................... 31
§3.3 计算结果汇总 .................................................................................................... 32
§3.4 分析 .................................................................................................................... 32
§3.4.1 流量对热力计算结果的影响 ................................................................... 33
§3.4.2 氧化床截面积对热力计算结果的影响 .................................................. 34
§3.5 本章小结 ............................................................................................................ 36
第四章 矿井乏风氧化装置阻力实验研究及分析..................................................... 37
§4.1 氧化床阻力理论计算 ....................................................................................... 37
§4.2 实验装置 ............................................................................................................ 40
§4.2.1 蓄热式氧化床 ............................................................................................ 42
§4.2.2 换向系统 .................................................................................................... 43
§4.2.3 管路系统 .................................................................................................... 43
§4.2.4 测控系统 .................................................................................................... 44
§4.2.5 实验流程 .................................................................................................... 44
§4.3 实验结果及分析................................................................................................ 45
§4.3.1 流量对氧化床阻力的影响 ....................................................................... 45
§4.3.2 蜂窝体高度对氧化床阻力的影响 ........................................................... 47
§4.4 阻力计算值与实验值对比分析....................................................................... 48
§4.5 无量纲分析 ........................................................................................................ 51
§4.6 热态阻力实验 .................................................................................................... 53
§4.6.1 外加热热源功率及加热速率的计算....................................................... 53
§4.6.2 热态实验结果及分析................................................................................ 55
§4.7 无量纲关系式应用 ........................................................................................... 57
§4.8 本章小结 ............................................................................................................ 58
第五章 矿井乏风氧化装置技术经济性分析 ............................................................. 59
§5.1 氧化装置收益和成本分析 ............................................................................... 59
§5.1.1 回收热量收益 ............................................................................................ 59
§5.1.2 CDM 收益 ................................................................................................... 60
§5.1.3 氧化装置成本分析 .................................................................................... 61
§5.2 乏风氧化发电项目经济性分析....................................................................... 62
§5.3 本章小结 ............................................................................................................ 63
第六章 结论和建议....................................................................................................... 64
§6.1 结论 .................................................................................................................... 64
§6.2 建议 .................................................................................................................... 64
参考文献 ......................................................................................................................... 65
在读期间公开发表的论文和承担科研项目及取得成果 .......................................... 69
致 谢 ............................................................................................................................. 70
第一章 绪论
1
第一章 绪论
§1.1 研究背景及意义
§1.1.1 研究背景
甲烷(CH4)是天然气、沼气、油田气及煤矿坑道气的主要成分,是重要的燃
料和化工原料。对于大气环境而言,甲烷也是主要温室气体之一,其全球变暖潜
能值(Global Warming Potential,GWP)是 CO2的21 倍;同时,甲烷也被认为是
对臭氧层破坏有重要影响的物质,其臭氧层破坏潜能值(Ozone Depletion Potential,
ODP)是 CO2的7倍。除去自然界的生物厌氧腐解作用之外,向环境空气排放的
甲烷主要是由煤炭和油、气的开采过程,自然水体受生活污水和工业废水的污
染以及农业畜牧活动引起。据估算,在中国,甲烷排放的 90%产生于煤炭开采
过程(全球平均 70%左右),其中随矿井乏风排放的甲烷估计占煤矿甲烷逸出
总量的 64%;统计数据表明,中国每年矿井乏风排放甲烷约为 120~170 亿Nm3,
且逐年增加[1]。图 1-1 体现了我国矿井乏风的排放情况。
图1-1 我国矿井乏风的排放量
在煤矿开采的过程中,矿井出风口排出的煤矿通风,其中含有一定浓度的
甲烷(体积浓度<1%),称之为矿井乏风(Mine Ventilation Air, MVA),俗称―乏
风‖。每年,全世界因煤矿开采而排入大气中的甲烷总量约为 2500 万吨,并且
随着煤炭产量的增加,其总量呈现越来越大的趋势;预计到 2015 年甲烷排放量
将增至 3000 万吨,其中 70%来自甲烷浓度低于 1%的矿井乏风中[2]。这部分煤
矿甲烷由于浓度太低,从技术层面上看,其利用难度大;从经济层面上看,其
利用成本高。目前,世界上几乎所有煤矿的矿井乏风都未进行回收处理,而是
直接排入大气。这些甲烷以乏风的形式直接排放到大气中,一方面造成了大量
摘要:
展开>>
收起<<
摘要长期以来,我国是以煤炭为主要能源的国家。在煤的开采过程中产生了大量的煤层气,这些煤层气中含有大量的甲烷,其中大部分(占70%左右)以矿井乏风的形式排放到大气中。甲烷的温室效应相当于二氧化碳的21倍,对臭氧层的破坏能力是二氧化碳的7倍。根据有关数据显示,我国每年通过矿井乏风排入大气的甲烷总量约为120~170亿m3,造成大量能源浪费,同时也加剧了温室效应。这些矿井乏风中的甲烷具有浓度低(其体积浓度
相关推荐
-
VIP免费2024-10-15 30
-
VIP免费2025-01-09 6
-
VIP免费2025-01-09 6
-
VIP免费2025-01-09 7
-
VIP免费2025-01-09 6
-
VIP免费2025-01-09 7
-
VIP免费2025-01-09 7
-
VIP免费2025-01-09 8
-
VIP免费2025-01-09 8
-
VIP免费2025-01-09 9
作者:赵德峰
分类:高等教育资料
价格:15积分
属性:73 页
大小:3.27MB
格式:PDF
时间:2024-11-11
作者详情
相关内容
-
医学信息集成测试系统的研究与实现
分类:高等教育资料
时间:2025-01-09
标签:无
格式:PDF
价格:15 积分
-
余热驱动氨水吸收式制冷系统的理论及实验研究
分类:高等教育资料
时间:2025-01-09
标签:无
格式:PDF
价格:15 积分
-
喷雾降温技术适用性及热环境研究
分类:高等教育资料
时间:2025-01-09
标签:无
格式:PDF
价格:15 积分
-
收缩—扩张喷嘴的气泡雾化数值模拟
分类:高等教育资料
时间:2025-01-09
标签:无
格式:PDF
价格:15 积分
-
支持供应链的工作流系统结构及其计划与调度的研究与应用
分类:高等教育资料
时间:2025-01-09
标签:无
格式:PDF
价格:15 积分