13X沸石分子筛整体成型太阳能吸附剂吸附性能研究

3.0 牛悦 2024-11-11 4 4 2.63MB 79 页 15积分
侵权投诉
13X 沸石分子筛是众多类型人工合成沸石的一种,是对环境友好的绿色自然
工质对,其强大的孔道体系使其具备较好的物理性吸附能力。本研究的主要内容
就是对 13X 沸石分子筛在低真空的环境下测试其对制冷剂的吸附/脱附能力,简而
言之,本实验原理为由于吸附剂在脱附/吸附制冷剂的过程导致了内部气压发生变
化,制冷剂发生冷凝/蒸发的相变,从而出现制热/制冷的现象。
本研究的实验基础是需要满足低真空的密封测试环境,因此设计并搭建了一
台名为“新型测试整体成型太阳能制冷吸附剂吸附性能的装置”该装置由不锈钢
密封焊接而成,包括真空测试电阻规、真空阀门、真空连接头、真空硅胶管等部
件。该装置经过抽真空处理后,最低真空度可达 200Pa(与真空泵的抽真空能力有
关),在关闭阀门空置 24 小时后,其真空度变量<10Pa,即真空度偏差控制在 5%
以内,具备良好的真空密封环境,可用于测试不同配比的 13X 整体成型沸石分子
筛吸附剂样品对于制冷剂(又称吸附质)的脱附/附性能。此外,试验台还包括
高温烘箱、恒温油浴、水泵、真空测试仪、量筒、热电偶、Keithley 温度数据采集
器等设备,在实验过程中可记录温度、真空度、冷凝器/蒸发器内的水量等数据,
以便试验后期的实验结果分析比较。本研究以 13X 沸石分子筛原粉为吸附剂,逐
量添加粘结剂,制作了 19 种整体成型的吸附剂样品。制定相应的实验方案,在相
同实验工况下对 19 种样品进行测试,得到数据;改变脱附温度等变量,挑选典型
实验样品对其进行测试,得到多组数据。
其次,实验开始前,需要利用真空泵对系统内部进行抽真空,经试验发现,
真空度越低脱附/吸附效果越好,实验周期也可适当缩短,但真空度偏低会在一定
程度上影响吸附剂内部的传热传质效果。在每个样品试验前,需要对样品连接试
验台后进行预加热并循环多次抽真空,使其滞留在吸附剂内部的空气全部抽取出
来,直至真空度数值不变,否则无法达到要求的低真空环境。另外,本研究还选
取了典型的吸附剂样品,改变其脱附时的热环境温度进行测试,发现在脱附温度
达到 200℃时,样品能够基本实现完全脱附,从而脱附/吸附效果也能达到该样品
的最佳状态;在脱附过程中,取室内常温条件下的水作为冷却水(约为 25℃)就
能达到较好的冷凝效果;样品在脱附过程中,吸附剂一侧的加热温度达到 70℃左
右,冷凝器一侧便开始出现冷凝现象,每个样品的脱附/吸附速率都是先快后慢直
至不变。
测试结果表明,吸附剂样品的脱附/附效果与粘结剂的配比量是呈向下开口
的抛物线趋势变化的。峰值出现在粘结剂与 13X 沸石分子筛粉末的配比比例为
8/100(Kg/Kg)Z8 样品,该样品在 200℃高温条件下加热 4小时的脱附量为 0.22g/g
在自然冷却条件下冷却 8小时的吸附量为 0.18g/g制冷系数 COP 达到了 0.65;而
同等条件下,13X 沸石分子筛整体成型的样品的脱附量和吸附量分别为 0.125g/g
0.11g/gCOP 0.52足以可见,在添加了粘结剂后形成的整体成型的 13X
石分子筛的效果要比纯分子筛式样的吸附性能要好很多。
在进行本研究的过程中,笔者发表了一篇名为“Adsorption Performance of
Compound Adsorbent Using the Thermal Vacuum Method”EI 会议论文,所搭建的
试验台申请了一项发明专利(专利号:201210026681.3和一项实用新型专利(专
利号:201220038992.3)。
关键词: 太阳能 吸附制冷 13X 沸石分子筛 整体成型吸附剂 制冷量
COP
ABSTRACT
13 x zeolite molecular sieve is various types of synthetic zeolite which is
environmentally friendly green material, its powerful channel system make it have
better physical adsorption capacity. The main focus of this study is of 13 x zeolite
molecular sieves in low vacuum environment test on the refrigerant
adsorption/desorption ability. In short, the principle of this experiment is that the
adsorbent changed the internal pressure in the process of desorption/adsorption, during
when the phase transition of the refrigerant happened, which appear the phenomenon of
heating/cooling.
This study is based on the low vacuum sealing test environment, so designed and
builded a platform called "A new device aim to test adsorption performance of formed
solar refrigeration adsorbent", the device is made of stainless steel by seal welding,
which including vacuum test resistance gauge, vacuum valve, vacuum connector,
vacuum silicone tube etc. After vacuum treatment, the minimum vacuum can reach 200
pa (partly determined by the ability of vacuum pump), close the valve vacancy after 24
hours, if the vacuum varied less than 30 pa, namely control the vacuum deviation within
5%, which is a sign of good vacuum seal environment, then it can be used to test
different proportion of 13 x zeolite molecular sieve adsorbent overall molding samples
for the desorption/adsorption performance of the refrigerant which also be called
adsorbate. In addition, test bench also include high temperature oven, constant
temperature oil bath, water pump, vacuum tester, messaenle, thermocouple, Keithley
temperature data acquisition unit etc. In the experimental process, the date such as
temperature, vacuum degree, the variation of the refrigerant in the condenser/evaporator
will be recorded. The data will be good use in the later experimental results analysis. In
this study, the 13 x zeolite molecular sieve powders is used as adsorbent, by adding
different amount of binder, making the whole-formed 19 species of adsorbent sample.
To formulate suitable experiment scheme, the 19 samples were tested in the same
experiment condition. Then change the temperature of desorption, typical samples were
selected to be experimented again.
Secondly, before the experiment, it is necessary to use the vacuum pump to pump
the internal air which is in the system. It is found that the lower the vacuum is, the better
desorption/adsorption effect is. The experimental period can be shortened appropriately
as well as. However, the low vacuum will influence the adsorbent internal heat and
mass transfer effect relatively. Everytime when connected the sample to the
experimental device, in order to extracte all the internal air, it is needed to preheat the
sample and vacuumize the system several times until the vacuum degree keeps constant,
otherwise it can't meet the requirements of the low vacuum environment. Beyond that,
this study also select the typical adsorbent samples, change the thermal environment of
desorption, found that the sample can realize the completely desorption level when the
temperature is set up to 200 , desorption/adsorption effect also can achieve the best.
During the desorption process, take indoor room temperature water as cooling water
(about 20) can achieve better condensation effect. Sample in the desorption process,
when the heating temperature reached 70 in the adsorbent side, the condenser side
began to appear the phenomenon of condensation.The desorption/adsorption rate of
each sample is fast to slow until unchanged.
Test results showed that desorption/adsorption effect of the adsorbent sample is a
downward open parabolic trend with the increased amount of binder. The peak value
appeared in the ratio of the binder and 13 x zeolite molecular sieve powder is of 8/100
(Kg/Kg) which is Z8 sample, the sample under the condition of 200 temperature
heating about 4 hours and the desorption quantity is 0.22 g/g. Then let the adsorbent
exposed in the natural condition to be cooled 8 hours, the adsorption quantity is 0.18 g/g
with the refrigeration coefficient COP reached 0.65. Comparatively, when under the
same condition, the desorption quantity and adsorption quantity of the pure 13 x zeolite
molecular sieve formed sample were respectively 0.125 g/g and 0.11 g/g, COP is 0.52.
Easy to found that the effect of the samples which added binder to be formed 13 x
zeolite molecular sieve is better than the pure one.
In the process of this study, the author published an EI conference paper named
"Adsorption Performance of Compound Adsorbent Using the Thermal Vacuum Method".
Besides, the experimental device has successfully applied for an invention patent (patent
No. : 201210026681.3) and a utility model patent (patent No. : 201220038992.3).
Key Words: Solar Energy, 13 x Zeolite Molecular Sieve,
Adsorption refrigeration, Formed Adsorbent,
Refrigerating Capacity, COP
中文摘要
ABSTRACT
第一章 绪论 ................................................................................................................. 1
1.1 课题来源 ........................................................................................................ 1
1.2 课题研究背景 ................................................................................................ 4
1.3 国内外研究水平及进展 ................................................................................ 5
1.3.1 太阳能吸附式制冷的基本原理 ............................................................ 5
1.3.2 吸附式制冷工质对的研究分析与比较 ................................................ 7
1.3.3 传热强化技术的研究进展 .................................................................. 12
1.3.4 13X 沸石分子筛吸附/脱附性能的研究现状 ..................................... 13
1.4 本研究的意义和内容 .................................................................................. 14
1.5 本章小结 ...................................................................................................... 15
第二章 建立整体成型复合吸附床的计算模型 ....................................................... 17
2.1 整体成型复合吸附床的结构 ....................................................................... 17
2.2 吸附床数学模型的建立 ............................................................................... 18
2.2.1 吸附床传热系数的计算 ...................................................................... 19
2.2.2 建立吸附床数学模型 .......................................................................... 22
2.3 本章小结 ....................................................................................................... 25
第三章 整体成型复合吸附剂的测试实验台的搭建 ............................................... 26
3.1 13X 沸石分子筛复合成型吸附剂样品的挑选及制备 ............................... 26
3.1.1 13X 沸石分子筛的分类与结构性质 .................................................. 26
3.1.2 13X 沸石分子筛复合成型吸附剂样品的制备材料及所需设备 ...... 28
3.1.3 13X 沸石分子筛复合成型吸附剂的制备流程 .................................. 30
3.2 吸附性能测试系统的实验台搭建 ............................................................... 31
3.2.1 新型测试整体成型太阳能制冷吸附剂吸附性能装置的设计原理 .. 31
3.2.2 实验台制作及搭建 .............................................................................. 34
3.3 本章小结 ....................................................................................................... 38
第四章 复合成型吸附剂脱附/吸附性能测试.......................................................... 39
4.1 实验方案的设计 ........................................................................................... 39
4.1.1 实验测试流程及步骤 .......................................................................... 42
4.1.2 实验数据的记录与采集 ...................................................................... 45
4.2 实验结果分析与比较 ................................................................................... 47
4.2.1 不同吸附剂样品脱附/吸附水量变化及分析 ..................................... 47
4.2.2 测试系统内部真空度变化及分析 ...................................................... 49
4.2.3 吸附床温度变化 .................................................................................. 51
4.2.4 13X 沸石整体成型吸附剂样品的热力计算 ...................................... 53
4.2.5 整体成型吸附剂 Z8 13X 沸石原粉 Z0 脱附/吸附性能比较 ....... 59
4.2.6 整体成型复合吸附剂 Z8 在不同温度下脱附性能测试及比较 ........ 61
4.2.7 测试方法的可行性和可靠性分析 ...................................................... 62
4.3 13X 沸石分子筛复合成型吸附剂性能汇总及比较 ................................... 64
4.4 本章小结 ....................................................................................................... 65
第五章 研究结论与展望 .............................................................................................. 67
5.1 研究结论 ....................................................................................................... 67
5.2 课题展望 ....................................................................................................... 67
参考文献 ........................................................................................................................ 68
在读期间公开发表的论文和承担科研项目及取得成果…………………………….74
致谢 ................................................................................................................................ 75
摘要:

摘要13X沸石分子筛是众多类型人工合成沸石的一种,是对环境友好的绿色自然工质对,其强大的孔道体系使其具备较好的物理性吸附能力。本研究的主要内容就是对13X沸石分子筛在低真空的环境下测试其对制冷剂的吸附/脱附能力,简而言之,本实验原理为由于吸附剂在脱附/吸附制冷剂的过程导致了内部气压发生变化,制冷剂发生冷凝/蒸发的相变,从而出现制热/制冷的现象。本研究的实验基础是需要满足低真空的密封测试环境,因此设计并搭建了一台名为“新型测试整体成型太阳能制冷吸附剂吸附性能的装置”,该装置由不锈钢密封焊接而成,包括真空测试电阻规、真空阀门、真空连接头、真空硅胶管等部件。该装置经过抽真空处理后,最低真空度可达20...

展开>> 收起<<
13X沸石分子筛整体成型太阳能吸附剂吸附性能研究.pdf

共79页,预览8页

还剩页未读, 继续阅读

作者:牛悦 分类:高等教育资料 价格:15积分 属性:79 页 大小:2.63MB 格式:PDF 时间:2024-11-11

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 79
客服
关注