USST_Arts_112480746 电子商务销售网络中的消费者行为动力学研究

VIP免费
3.0 赵德峰 2024-11-11 4 4 2.98MB 52 页 15积分
侵权投诉
随着计算机技术和互联网的发展,电子商务在人们的消费领域所占的比重
来越大。电子商务以其迅猛的增长速度和广阔的发展前景成为诸多企业的必然
择。那么,基于复杂性科学理论对电子商务网络和消费者网购行为进行研究就
了理论意义和实际价值。
电子商务具有客户多变性、消费行为多样性的特征,是一个很复杂的系统。
管是 B to BB to C 还是 C to C,都是供应链的组成部分。本文运用复杂性科学理
论,通过数据实证与理论分析来研究销售网络的特性。结合长尾理论,对电子
务中商品销售量的分布进行研究。此外,针对消费者的网络购物行为,基于个
层面和群体层面进行深入挖掘,分析消费者的在线购物行为模式和行为动机。
出如下结论:
首先,在电子商务销售网络中,不管是从行业角度还是单件商品角度来考
其销售量排名分布都体现出幂律特性,销售曲线呈现出长长的尾巴。这表明,
部分店铺(商品)的销售量都比较低,但是少部分店铺(商品)的销售量极大
这种无标度性的形成机制在于:网络销售平台给消费者提供了海量的选择,商
的“销售量”成为一个综合的考核指标,销售量越大,被再次购买的概率也就
大。这就产生了“富者愈富”的现象。在这种情况下,销售网络体现出对随机攻击
的鲁棒性和对恶意攻击的脆弱性。生产商需要重点维护销售量极大的几家店铺
但是论,基产品(Niche Product创造了可
且边际成本很低。所谓的利基产品,是指和大热门相对应的普通产品,它们构
了长尾的主要部分。因此,生产商需要在热门店铺(商品)和非热门之间进行
益分配,并合理看待两者之间的转换关系。
其次消费线物行为的根据1~5
年的淘宝购物记录和两家店铺的销售统计了个体消费者和群体消费者的购
间间,发现群体消费者和大部分个体消费者的购物间间分布都呈现出
幂律性,消费者的购物行为体现出长。也有少部分个体
消费者的购物指数分布指数截断的幂律分布。这表明,消费
的在线购物行为体现出,但是也体现出复杂性和多样性可以
据不的消费者供不策略,制对性研究表明
在电子商动中,不(幂律分布)体现在诸售量的分
消费者购物间间的分布,这两者之间也在一在关系。
最后,根据可本文两家店铺的消费购序列成复杂网
通过计算分析网络扑参数,发现构造的网络体现出小世性和无标度性
且两家店铺的数非常接近,表明不的消费群体的购物行为具有一的相性。
键词:复杂性科学 长尾理论 电子商务 动力学 购物行为
ABSTRACT
With the development of computer science and the internet technology, the
proportion of e-commerce in people's consumption is growing. The rapid growth of e-
commerce and its broad development prospect make it the inevitable choice of many
enterprises. So, it has a theoretical and practical value to study the online shopping
networks and the law of consumer behavior based on the theories of complexity science
and human dynamics.
E-commerce has some characteristics including customer variability and the
diversity of consumers’ behavior, so it is a very complex system. Whether the business
model is B to B, B to C or C to C, it is a part of the supply chain. In this paper, through
empirical data testing and theoretical analysis, it explors the characteristics of the sales
networks using the theory of complexity science. Combined with the long tail theory,
this paper studies the distribution of e-commerce merchandising. In addition, it also
analyzes in-depth the behavior patterns and motivations of consumers’ online shopping
behavior from collective and individual perspectives. The following conclusions:
First, in the e-commerce sales networks, the sales ranking obeys a power law
distribution in both perspectives of the entire industry and single items. The sales curve
shows a long tail. This indicates that most stores (commodities) have relatively low
sales, but a small portion of stores (commodities) have a high volume. The formation
mechanism of this scale-free property lies: Online stores give consumers vast choice of
goods, and " sales" becomes a comprehensive assessment index: the greater the volume
is, the probability of being re-purchased will be higher. This results a "rich get richer"
phenomenon. In this case, the sales networks reflect robustness to random attacks and
vulnerability to malicious attacks. Manufacturers need to focus on maintaining the few
shops which have great sales. But according to the long tail theory, mass niche products
also create substantial profit with low marginal cost. Niche products are the
corresponding ordinary products with the most popular products, which constitute the
main part of the long tail. Therefore, manufacturers need allocate interest between
popular stores (commodities) and non-popular stores (commodities), and view the
conversion relationship between the two reasonably.
Then, this article analyzes the dynamics characteristics of consumers’ online
shopping behavior. Through collecting the 1 to 5 years’ shopping records of some
volunteers and the selling records of two stores, it analyzes the time interval of online
shopping of both individual consumers and group consumers. It finds that shopping
time distribution of group consumers and the majority of individual consumers exhibits
a power law, namely consumersshopping behavior reflects long silence and a brief
outbreak. There are also a small number of individual consumers whose shopping time
interval is exponentially distributed or shows power-law distribution with index ended.
This suggests that consumers’ online shopping behavior reflects a certain degree of
regularity, but also reflects its complexity and diversity. Sellers can offer different
marketing strategies according to different types of consumers, developping targeted
programs. The above study shows that in e-commerce activities, the inhomogeneity(the
power law distribution) is reflected in many aspects, including the distribution of sales
and the distribution of consumers’ shopping time interval, and there are some inherent
relationship between the two.
At last, according to the visualization algorithms, this paper consumes the
shopping time series of the two shops into complex networks. Through calculating the
topology parameters of the networks, it finds that the networks show the characteristics
of small world and scale-free property. And the parameters of two shops are very close,
indicating that consumers’ shopping behavior of different groups has a certain
similarity.
Key Word complexity science, the long tail theory, e-commerce,
human dynamics, consumer behavior
中文
ABSTRACT
.......................................................1
1.1题背景和研究意义...........................................1
1.2 本文所工作...............................................2
第二章 幂律分布和长尾理论概述......................................5
2.1 幂律分布的义和动力学机制...................................5
2.1.1 幂律分布的...........................................5
2.1.2 幂律分布的动力学机制.....................................7
2.2 长尾理论的概实证体现...................................7
2.2.1二八原长尾理论.....................................8
2.2.2 无标度性和长尾理论的关系.................................8
第三章 动力学理论和模分析...................................10
3.1 权决定机制模型..........................................11
3.2 截止时间的影响..............................................13
3.3 基于兴趣调整的人动力学模型................................13
3.4泊松的模型........................................15
第四章 电子商务销售网络特性研究...................................17
4.1 数据来和实证分析..........................................17
4.1.1 行业体销售量分布情况..................................17
4.1.2 单件商品销售量分布..................................18
4.1.3 单家店铺的销售量分布................................20
4.2 电子商务销售网络的形成机制..................................21
4.3 电子商务销售网络的特性研究..................................22
4.3.1 销售长尾的经济价值......................................22
4.3.2 电子商务销售网络的特性..................................23
4.4章小....................................................24
第五章 消费者在线购物行为的人动力学模式.........................26
5.1 数据来和实证分析..........................................27
5.2 个体网络购物行为的统计特征..................................28
5.2.1 间间隔服从幂律分布的消费者类型........................29
5.2.2 间间隔服从指数分布的消费者类型........................31
5.2.3 间间隔服从指数截断的幂律分布的消费者类型..............32
5.2.4 类型消费者行为模式的对比............................33
5.3 消费者群体购物行为的人动力学模式..........................35
5.4章小....................................................36
第六章 在线购物行为的可视图分析...................................37
6.1理概述..........................................37
6.2 群体购物行为的可视图分析....................................39
第七章 束语.....................................................42
考文献 ……………………………………………………………………………44
摘要:

电子商务销售网络中的消费者行为动力学研究摘要随着计算机技术和互联网的发展,电子商务在人们的消费领域所占的比重越来越大。电子商务以其迅猛的增长速度和广阔的发展前景成为诸多企业的必然选择。那么,基于复杂性科学理论对电子商务网络和消费者网购行为进行研究就有了理论意义和实际价值。电子商务具有客户多变性、消费行为多样性的特征,是一个很复杂的系统。不管是BtoB、BtoC还是CtoC,都是供应链的组成部分。本文运用复杂性科学理论,通过数据实证与理论分析来研究销售网络的特性。结合长尾理论,对电子商务中商品销售量的分布进行研究。此外,针对消费者的网络购物行为,基于个体层面和群体层面进行深入挖掘,分析消费者的在...

展开>> 收起<<
USST_Arts_112480746 电子商务销售网络中的消费者行为动力学研究.doc

共52页,预览6页

还剩页未读, 继续阅读

作者:赵德峰 分类:高等教育资料 价格:15积分 属性:52 页 大小:2.98MB 格式:DOC 时间:2024-11-11

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 52
客服
关注