USST_Arts_112480754基于学习效应的置换流水车间调度问题研究

VIP免费
3.0 赵德峰 2024-11-11 4 4 2.14MB 66 页 15积分
侵权投诉
调度是一个短期的决策过程,它将有限的生产资源合理分配给不同的任务,
在生产制造系统以及信息处理系统中占有重要地位。一个好的调度方案可以使企
业获得更高的生产效率及经济效益,能够提高企业的市场竞争力。目前,对于生
产调度的研究主要有两个方面:一是对调度问题进行建模;二是对求解调度问题
的算法进行设计。流水车间调度问题是研究最广泛的调度问题之一,有很强的工
程应用背景。而置换流水车间调度问题是比较典型的一类流水车间调度问题,它
主要在以单件大批量形式加工的制造型企业中存在。在生产调度问题的理论研究
中,置换流水车间调度问题因形式简洁,关联性广泛以及计算复杂度高成而成为
研究的热点。
学习效应是一个获得经验的过程,它发生在重复性的做一件相同或者相似的
工作时。在经典的排序理论中,人们将工件的加工时间看做一个常数。然而,在
实际生产过程中,工人和机器在连续加工同种或者同类工件时,由于学习效应的
存在,导致越往后加工,加工工件所用的时间越短,使得工件的累积平均完成时
间比理论值短。本文将学习效应模型加入到置换流水车间调度问题中,研究分析
学习效果对加工指标的影响程度,具有重要的理论价值和应用价值。
本文首先对国内外相关研究现状做了详细概述,然后分别建立基于学习效应
的单目标和多目标置换流水车间调度问题的模型,接着探索设计了萤火虫膜算法
对建立的模型进行测试求解:通过与萤火虫算法和粒子群算法的对比,验证了萤
火虫膜算法求解置换流水车间调度问题具有可行性和有效性,然后用 Car 类测试
问题测试得到不同学习率下置换流水车间调度问题的最大完工时间及总流经时间,
并分析得出学习效应对单目标和多目标置换流水车间调度问题的影响程度。
关键词: 置换流水车间调度 学习效应 学习率 萤火虫膜算法
目标 多目标
ABSTRACT
Scheduling is a short-term process of making decision. Limited resources
are allocated to different tasks rationally by scheduling. It plays an important role in
the manufacturing system and information processing system. A good scheduling
scheme can make the enterprise get higher production efficiency and economic benefit
and improve the market competitiveness of enterprises. At present, the production
scheduling research mainly has two areas: The first one is modeling the scheduling
problem; the second one is designing algorithm to solve the scheduling problem. Flow
shop scheduling problem is one of the most extensive research in scheduling problems,
and it has a strong engineering application background. And permutation flow shop
scheduling problem is a typical kind of flow shop scheduling problem, it is especially
suitable for manufacturing enterprises which have single mass production background.
In the theoretical study of the scheduling problem, permutation flow shop scheduling
problem with simple form, extensive relevance and high level of computation
complexity has became the hot research area.
The learning effect is a process of gaining experience. It happens when doing the
same or similar work repeatedly. In the classical theory of sorting, the processing time
of a workpiece is a constant. However as the existence of learning effect when we
make the same or similar workpiece in the processing workshop, the
following workpiece will be finished in a shorter time. This paper adds the learning
effect model to the permutation flow shop scheduling problem, studies and analysis the
influence of learning effect on the manufacturing. The research has important
theoretical value and application value.
At first, this paper made a detailed overview about the present situation of
domestic and foreign related research, and then model single objective and
multi-objective permutation flow shop scheduling problem based on the learning effect,
and then explore and design the fireflies membrane algorithm to test our model: by
contrast with the firefly algorithm and particle swarm optimization algorithm, verified
the feasibility and effectiveness of firefly membrane algorithm to solve the permutation
flow shop scheduling problem, and then use ‘Car test problems to get the makespan
and total flow time of permutation flow shop scheduling problem under different
learning rate, and get the effect degree of the influence in single objective and
multi-objective permutation flow shop scheduling problem.
Key Words: Permutation flow shop scheduling problem, Learning
effects, Learning rate, Firefly membrane algorithm, Single objective,
Multi-objective
中文摘要
ABSTRACT
第一章 绪论„„„„„„„„„„„„„„„„„„„„„„„„„„„„„1
1.1 课题的来源、研究目的及意义„„„„„„„„„„„„„„„„„„1
1.1.1 课题的来源„„„„„„„„„„„„„„„„„„„„„„„1
1.1.2 课题的研究目的„„„„„„„„„„„„„„„„„„„„„1
1.1.3 课题研究的意义„„„„„„„„„„„„„„„„„„„„„1
1.2 国内外研究现状 „„„„„„„„„„„„„„„„„„„„„„„ 2
1.2.1 PFSP 的研究现状„„„„„„„„„„„„„„„„„„„„„2
1.2.2 多目标优化问题的研究现状„„„„„„„„„„„„„„„„3
1.2.3 学习效应的研究现状„„„„„„„„„„„„„„„„„„„4
1.2.4 膜算法的研究现状„„„„„„„„„„„„„„„„„„„„5
1.3 论文主要研究内容与框架 „„„„„„„„„„„„„„„„„„„6
第二章 调度及算法研究综述„„„„„„„„„„„„„„„„„„„„„„8
2.1 PFSP 的问题描述 „„„„„„„„„„„„„„„„„„„„„„„8
2.2 求解 PFSP 的算法概述 „„„„„„„„„„„„„„„„„„„„„9
2.3 膜计算优化算法„„„„„„„„„„„„„„„„„„„„„„„ 13
2.3.1 生物细胞膜的基本结构和功能 „„„„„„„„„„„„„„13
2.3.2 膜计算基本理论 „„„„„„„„„„„„„„„„„„„„14
2.3.3 膜计算的基本描述 „„„„„„„„„„„„„„„„„„„15
2.3.4 膜计算的规则 „„„„„„„„„„„„„„„„„„„„„17
2.4 萤火虫算法„„„„„„„„„„„„„„„„„„„„„„„„„ 18
2.4.1 萤火虫算法的研究现状 „„„„„„„„„„„„„„„„„18
2.4.2 萤火虫算法的原理 „„„„„„„„„„„„„„„„„„„18
2.4.3 萤火虫算法的数学描述 „„„„„„„„„„„„„„„„„19
2.4.4 算法设计 „„„„„„„„„„„„„„„„„„„„„„„19
2.4.5 算法流程 „„„„„„„„„„„„„„„„„„„„„„„21
2.4.6 仿真测试 „„„„„„„„„„„„„„„„„„„„„„„ 22
2.5 本章小结„„„„„„„„„„„„„„„„„„„„„„„„„„ 23
第三章 基于学习效应的单目标置换流水车间调度问题研究 „„„„„„„„24
3.1 学习曲线模型„„„„„„„„„„„„„„„„„„„„„„„„ 24
3.2 基于学习效应的 PFSP 模型的构建„„„„„„„„„„„„„„„„27
3.3 单目标萤火虫膜算法„„„„„„„„„„„„„„„„„„„„„ 27
3.3.1 算法设计 „„„„„„„„„„„„„„„„„„„„„„„27
3.3.2 算法参数讨论 „„„„„„„„„„„„„„„„„„„„„29
3.3.3 仿真测试 „„„„„„„„„„„„„„„„„„„„„„„30
3.4 模型的求解与分析 „„„„„„„„„„„„„„„„„„„„„„33
3.5 本章小结„„„„„„„„„„„„„„„„„„„„„„„„„„ 36
第四章 基于学习效应的多目标置换流水车间调度问题研究 „„„„„„„„37
4.1 多目标优化问题的描述 „„„„„„„„„„„„„„„„„„„„37
4.2 基于学习效应的 MPFSP 模型的构建 „„„„„„„„„„„„„„„39
4.3 多目标萤火虫膜算法 „„„„„„„„„„„„„„„„„„„„„40
4.3.1 多目标 Pareto 最优解集的构建„„„„„„„„„„„„„„40
4.3.2 聚集距离 „„„„„„„„„„„„„„„„„„„„„„„41
4.3.3 局部搜索算法的设计 „„„„„„„„„„„„„„„„„„42
4.3.4 膜内多目标萤火虫算法的设计 „„„„„„„„„„„„„„43
4.3.5 多目标萤火虫膜算法的总流程 „„„„„„„„„„„„„„44
4.4 模型的求解与分析 „„„„„„„„„„„„„„„„„„„„„„46
4.5 本章小结 „„„„„„„„„„„„„„„„„„„„„„„„„„54
第五章 总结与展望 „„„„„„„„„„„„„„„„„„„„„„„„„55
参考文献„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„57
在读期间公开发表的论文和承担科研项目及取得成果„„„„„„„„„„„62
致谢 „„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„ 63
第一章 绪论
1
第一章
1.1 课题的来源、研究目的及意义
1.1.1 课题的来源
本课题来源于国家自然科学基金资助项目:“行为驱动、学习效应嵌入的
TFT-LCD 调度建模及智能优化研究-基于有限理性及中国情景的视角”(项目编
号:71271138)
1.1.2 课题的研究目的
本文针对置换流水车间调度问题(Permutation Flow-shop Scheduling Problem,
PFSP)考虑生产实际情况,将学习效应模型加入到 PFSP 中,建立基于学习效应
PFSP 模型,并设计嵌套有萤火虫算法的膜算法来对含有学习效应的单目标
PFSP 和多目标 PFSP 进行求解,并与不含学习效应时两种情况下的问题结果进行
比较分析,找出差距,为制造企业提供理论依据。
1.1.3 课题研究的意义
近年来,生产调度问题作为当前研究的一个热点问题,被广泛地研究。生产
调度问题包括单机调度问题(Single Machine SchedulingSMS)、流水车间调度问
(Flow-shop Scheduling Problem, FSP) 、作业车间调度问题(Job-shop
Scheduling problem, JSP)以及开放车间调度问题(Open-shop Scheduling Problem
OSP)等。据相关资料统计表明:大约有 25%的制造系统、信息服务系统可以用流
水车间调度模型来表示。
在实际生产车间中,PFSP 是流水车间调度问题中重要的一类调度问题,主要
存在于以单件大批量生产为主的制造类企业。PFSP 不仅有工程背景,还是一个经
典的理论问题,它形式简洁:所有工件按照同一种排序依次通过每一台机器;关
联性广泛:是很多生产调度问题的缩影;计算复杂度很高:当机器数大于 2时已
NP 难题。因此,该问题一直是学术界和工程领域的研究热点,找到求解该问
题的有效方法,对于提高企业的生产效率和生产资源的利用率、提高企业竞争能
力具有非常重要的意义。
在经典的排序理论中,人们通常将工件的加工时间设置为常数,而不考虑与
工件的加工位置之间的关系。然而,在实际生产的过程中,工人和机器在加工同
摘要:

摘要调度是一个短期的决策过程,它将有限的生产资源合理分配给不同的任务,在生产制造系统以及信息处理系统中占有重要地位。一个好的调度方案可以使企业获得更高的生产效率及经济效益,能够提高企业的市场竞争力。目前,对于生产调度的研究主要有两个方面:一是对调度问题进行建模;二是对求解调度问题的算法进行设计。流水车间调度问题是研究最广泛的调度问题之一,有很强的工程应用背景。而置换流水车间调度问题是比较典型的一类流水车间调度问题,它主要在以单件大批量形式加工的制造型企业中存在。在生产调度问题的理论研究中,置换流水车间调度问题因形式简洁,关联性广泛以及计算复杂度高成而成为研究的热点。学习效应是一个获得经验的过程...

展开>> 收起<<
USST_Arts_112480754基于学习效应的置换流水车间调度问题研究.pdf

共66页,预览7页

还剩页未读, 继续阅读

作者:赵德峰 分类:高等教育资料 价格:15积分 属性:66 页 大小:2.14MB 格式:PDF 时间:2024-11-11

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 66
客服
关注