基于高频数据的股指期货跨期套利研究
![](/assets/7a34688/images/icon/s-doc.png)
VIP免费
基于高频数据的股指期货跨期套利研
究
摘 要
沪深 300 股指期货自 2010 年4月16 日上市以来,得到了众多投资者的青睐,
目前已经成为一个成熟的期货品种。我国机构投资者在股指期货投资上热衷于低
风险的套利交易,特别是稳健性高的期现套利交易。但自 2011 年以来,沪深 300
股指期货市场已经较为成熟,期现套利机会并不多,这严重制约了套利资金的套
利活动。因此,挖掘新的套利机会成为当前迫切的命题。
股指期货的跨期套利是套利投资的新方向。特别是随着交易模式系统化的发
展,统计套利成为量化投资领域的主打对冲策略,对我国股指期货统计套利的研
究,不论是就市场有效性探讨还是对于股指期货的监督管理,抑或是投资者的程
序化交易,都具有十分重要的意义。
本文采用 5分钟高频收盘价格数据,选取我国沪深 300 股指期货作为研究对
象。首先应用协整理论对当月和次月连续合约间的关系进行分析,协整检验表明
当月合约和次月合约存在长期均衡关系,可以用来构建协整套利。同时,基于持
有成本定价理论对两合约间的价差进行影响因素分析表明无风险利率和股息率对
价差波动具有显著的影响,是价差变化的 Granger 因果原因,对价差波动的解释
能力为 20%。
为更深入分析价差,接着将价差分解为均值中枢和随机扰动项两部分,与以
往研究不同,本文采用指数加权移动平均法来估计价差的均值中枢。通过敏感性
分析以及 Monte Carlo 模拟确定了相关参数,对样本内数据建立一般模型,实证
结果表明本文设计的统计套利策略在样本内获得了 16.71%的年化收益,而同期市
场收益率为-25.02%,充分体现了统计套利不受市场整体走势影响的优势。
考虑到价差波动的时变方差特性,以样本内统计套利模型为基础,通过基于
历史波动率和基于时变波动率两种方法建立样本外套利策略,时变波动率采用
AR(3)-GARCH(2,1)来建模和预测,结果表明本文的统计套利策略在样本外仍取得
了超过 7%的年化收益,且相比基于历史波动率的策略,基于时变波动率的策略
具有更好的稳定性,能捕捉更多的套利机会,有望获得更高的风险调整收益,为
统计套利策略构建提供了新的思路。
关键词:股指期货 协整 持有成本模型 AR-GARCH 模型 统计套利
ABSTRACT
Listed on April 16 in 2010, CSI300 futures have got the favor of many investors
and have become a mature future variety. Institutional investors in China are keen on
the low risk arbitrage trading in CSI300 future market, especially the stock index
futures and spot arbitrage with high robustness. But since 2011, the CSI300 future
market has been relatively mature, opportunity of future and spot arbitrage is not much,
which seriously restrict the arbitrage activity of arbitrage funds. Therefore, digging new
arbitrage strategies becomes the urgent topic.
The calendar spread arbitrage of CSI300 futures is a new direction of arbitrage
activity. Especially with the development of systematic trading mode, and statistical
arbitrage has become the main hedge strategy in quantitative investment field, the study
of statistical arbitrage in the CSI300 future market has very vital significance, whether
on the test of market efficiency, or for the supervision and administration of stock index
futures, or for investor’s program trading.
In this paper, 5 minutes high-frequency closing price data of CSI300 futures is
selected as study object. First, we study the relationship of the recent month consecutive
contract and the next month consecutive contract with co-integration theories, and
outcome shows that there is a long-term equilibrium relationship between them, so they
can be used to construct co-integration arbitrage. Based on the theory of cost of carry
model, we study factors that could cause changes of the spread between these two
contracts, outcome shows that risk-free interest and dividend yield do have significant
influence on spread fluctuations and they are the granger causality of the spread
changes. Altogether, risk-free interest and dividend yield can explain 20% of the spread.
For more in-depth analysis of the spread, then spread is decomposed into two parts
——mean central and random disturbance. Different from previous research, EWMA
method is used in this paper to estimate the mean central. Related parameters are
determined afterwards through sensitivity analysis and Monte Carlo simulation, so a
general statistical arbitrage model is constructed on the sample data. Empirical results of
the strategy show that we can get 16.71% accumulated earnings in a year within the
sample, while the market’s earning is minus 25.02% in the same period, which fully
embodies the advantages of statistical arbitrage regardless of the influence of market
overall trend.
In addition, considering the time-varying variance characteristics of spread
fluctuations, we base our statistical arbitrage model on sample data, and two different
strategies are built for data out of the sample period. One is based on constant historical
volatility; the other is based on time-varying volatility which is produced by using
AR(3)-GARCH(2,1) model. Results show that the statistical arbitrage strategy can still
earn more than 7% of the annual income outside the sample, and compared to the
constant historical volatility, strategy based on time-varying volatility has better
stability, yields more arbitrage opportunities and is expected to obtain a higher risk
adjusted returns, which provides a new idea for the construction of statistical arbitrage
strategy.
Key Words:Stock index futures, Co-integration, Cost of carry model,
AR-GARCH model, Statistical arbitrage
目 录
摘 要
ABSTRACT
第一章 绪论..................................................................................................................1
§1.1 研究背景和意义..............................................1
§1.1.1 研究背景................................................1
§1.1.2 研究意义................................................1
§1.2 国内外研究现状..............................................2
§1.2.1 国外研究现状............................................2
§1.2.2 国内研究现状............................................4
§1.3 研究方法和内容框架..........................................5
§1.3.1 研究方法................................................5
§1.3.2 内容框架................................................5
第二章 股指期货套利简介..........................................................................................7
§2.1 股指期货在我国的发展........................................7
§2.1.1 股指期货发展及主要功能..................................7
§2.1.2 沪深 300 股指期货介绍....................................8
§2.2 股指期货的套利.............................................10
§2.2.1 期现套利...............................................11
§2.2.2 跨期套利...............................................11
§2.3 股指期货跨期套利的分类和方法...............................12
§2.3.1 股指期货跨期套利的分类.................................12
§2.3.2 股指期货跨期套利的方法.................................12
第三章 相关理论及计量模型....................................................................................15
§3.1 持有成本定价理论...........................................15
§3.1.1 持有成本定价公式推导...................................15
§3.1.2 买入套利的收益计量.....................................16
§3.1.3 卖出套利的收益计量.....................................17
§3.2 协整理论知识回顾...........................................18
§3.2.1 协整关系...............................................18
§3.2.2 Granger 因果检验.......................................18
§3.2.3 协整检验...............................................19
§3.2.4 误差修正模型...........................................19
§3.3 移动平均方法...............................................20
§3.3.1 简单移动平均法.........................................20
§3.3.2 指数加权移动平均法.....................................21
§3.4 AR-GARCH 模型..............................................22
§3.4.1 ARCH 模型..............................................22
§3.4.2 GARCH 模型.............................................23
§3.4.3 AR-GARCH 模型..........................................24
第四章 股指期货跨期套利实证检验........................................................................25
§4.1 持有成本定价理论解释.......................................25
§4.1.1 数据及变量.............................................25
§4.1.2 平稳性检验.............................................26
§4.1.3 因果关系检验...........................................27
§4.1.4 回归分析...............................................28
§4.1.5 本节小结...............................................28
§4.2 协整分析与最优头寸的估计...................................29
§4.2.1 数据选择...............................................29
§4.2.2 平稳性检验.............................................29
§4.2.3 因果关系检验...........................................30
§4.2.4 协整检验...............................................31
§4.2.5 误差修正模型...........................................33
§4.3 股指期货合约间的价差分析...................................33
§4.3.1 价差的重定义...........................................33
§4.3.2 价差的统计描述.........................................34
§4.3.3 平稳性检验.............................................35
§4.3.4 价差的分解.............................................35
第五章 股指期货统计套利实证分析........................................................................37
§5.1 统计套利的构建流程.........................................37
§5.1.1 信号指数...............................................37
§5.1.2 交易信号设计...........................................38
§5.1.3 止损点安排.............................................38
§5.1.4 套利绩效计量...........................................39
§5.2 样本内套利绩效分析.........................................40
§5.2.1 敏感性分析.............................................40
§5.2.2 累积收益结果...........................................41
§5.2.3 开平仓位置确定.........................................42
§5.2.4 套利结果分析...........................................44
§5.3 样本外统计套利分析.........................................47
§5.3.1 基于历史波动率的套利分析...............................47
§5.3.2 基于时变波动率的套利分析...............................49
§5.3.3 结果对比...............................................54
第六章 总结与展望....................................................................................................55
§6.1 本文研究内容总结...........................................55
§6.2 本文的创新点...............................................56
§6.3 进一步研究展望.............................................56
参考文献......................................................................................................................58
在读期间公开发表的论文和承担科研项目及取得成果..........................................62
致谢..............................................................................................................................63
第一章 绪论
第一章 绪论
§1.1 研究背景和意义
§1.1.1 研究背景
沪深 300 股指期货自 2010 年4月16 日上市以来,得到了众多投资者的青睐,
目前已经成为一个成熟的期货品种。我国机构投资者在股指期货投资上热衷于低
风险的套利交易,特别是稳健性高的期现套利交易。但自 2011 年以来,沪深 300
股指期货市场已经较为成熟,期现套利机会并不多,有研究表明 2011 年期现套利
的累计收益不足4%[1],这严重制约了套利资金的套利活动。而从国外股指期货市
场的历史发展情况来看,随着市场成熟程度的提高,期现套利收益必然下降。因
此,挖掘新的套利机会成为当前迫切的命题。
股指期货合约间的跨期套利或是套利投资的新方向。不管是在市场发展的前
期,还是成熟阶段,合约间的价格走势必然存在不一致,从而合约价格间的跨期
价差总是存在波动,进而带来套利机会。相比期现套利,跨期套利在两个合约间
操作,交易成本低廉,操作更加简单。因此,本文将深入探讨沪深 300 股指期货
跨期套利策略,特别是在基于高频数据的统计套利策略。
§1.1.2 研究意义
自1965 年美国 金 融 学 家 Fama 提 出 有 效 市 场 假 说 ( Efficient Market
Hypothesis, EMH)理论[2]之后,市场有效性成为众多学者热衷探讨的课题。我国
股指期货推出也才两年多的时间,其上市之初,由于人们对市场的不熟悉、信息
不对称以及存在的羊群效应,使得股指期货价格波动剧烈,基差和价差也远远偏
离其合理区间,不利于股指期货市场的健康发展,也不利于期货投资者自身利益
的保护[3]。作为股指期货三大参与者之一,套利交易的根本假设即为市场的非有效
性。随着时间推移,如果套利交易机会逐渐减少,则可判断市场趋于完善,反之
则说明股指期货市场投机现象仍很严重。因此,可以通过检验统计套利机会是否
存在就可以验证股指期货资本市场是有效的、弱有效的或者是无效的市场[4]。
股指期货的套利分为基差套利和价差套利,实际可行的只有期现套利和跨期
套利,由于股指期货推出时间仍较短,已有研究多集中于股指期货的期现套利,
1
摘要:
展开>>
收起<<
基于高频数据的股指期货跨期套利研究摘要沪深300股指期货自2010年4月16日上市以来,得到了众多投资者的青睐,目前已经成为一个成熟的期货品种。我国机构投资者在股指期货投资上热衷于低风险的套利交易,特别是稳健性高的期现套利交易。但自2011年以来,沪深300股指期货市场已经较为成熟,期现套利机会并不多,这严重制约了套利资金的套利活动。因此,挖掘新的套利机会成为当前迫切的命题。股指期货的跨期套利是套利投资的新方向。特别是随着交易模式系统化的发展,统计套利成为量化投资领域的主打对冲策略,对我国股指期货统计套利的研究,不论是就市场有效性探讨还是对于股指期货的监督管理,抑或是投资者的程序化交易,都具有...
相关推荐
-
VIP免费2024-11-22 17
-
VIP免费2025-01-09 6
-
VIP免费2025-01-09 10
-
VIP免费2025-01-09 8
-
VIP免费2025-01-09 6
-
VIP免费2025-01-09 8
-
VIP免费2025-01-09 13
-
VIP免费2025-01-09 8
-
VIP免费2025-01-09 14
-
VIP免费2025-01-09 10
作者:刘畅
分类:高等教育资料
价格:15积分
属性:62 页
大小:1.61MB
格式:DOC
时间:2024-11-07