f i e r c e a n d t h e n e t w o r k i n f o r m a t i o n r e s o u r c e s b e c o m e t o o b i g t o s e a r c h w i t h t h e
continuous development of network and information technology. If the enterprise can
f i n d o n e t e c h n o l o g y w h i c h c a n i d e n t i f y t h e i n t e r e s t o f u s e r s f r o m b e h a v i o r
and provide different people with different service initiatively, it will become a good
c o m p e t i t i v e a d v a n t a g e f o r e n t e r p r i s e . U n d e r t h i s b a c k g r o u n d , t h e b a s i c i d e a o f t h i s
paper is findin g th e chara c ter i stics o f the user's in tere st thro ugh a nal ysis the ne twork
u s e r b e h a v i o r e s p e c i a l l y u s e r ' s r a t i n g b e h a v i o r t o i m p r o v e t h e p e r s o n a l i z e d
r e c o mme n d a t i o n t e c h n o l o g y a n d i n c r e a s e t h e q u a l i t y o f r e c o m m e n d r e s u l t. O v e r a l l ,
this paper is mainly devoted from following aspects:
F i r s t o f a l l , t h e r e l e v a n t l i t e r a t u r e o f n e t w o r k u s e r b e h a v i o r a n d p e r s o n a l i z e d
recommendation was consulted and the research st atus was reviewed from hom e and
a b r o a d. B a s e d o n r e c e n t r e s e a r c h, t h e a u t h o r i n t e n d e d t o s u m m a r i z e t h e r e s e a r c h
direction of network user behavior and personalized recommendation,
p o i n te d o u t i t ’ s i m p o r t a n t t o c o m b i ne t h e n e t w o r k u s e r' s r a t i n g b e h a v i o r a n d
personalized recommendation together to do research.
Secondly, this article summarized the theory of network users and the behavior of
the users. Several common network behaviors such as user retrieval behavior, browse
behavior, interactive behavior and choice behavior was described. The information of
u s e r b e h a v i o r i s n e c e s s a r y f o r p e r s o n a l i z e d r e c o m m e n da t i o n w h i c h i s o n e k i n d o f
information filtering technology. It mainly contains: based on content recommendation,
a s s o c i a t i o n r u l e s r e c o m m e n d a t i o n , c o l l a b o r a t i v e f i l t e r i n g a n d m i x e d r e c o m m e n d
technology. This paper analyzed the collaborative filtering algorithm especially.
Finally, based on analyzing the network user's rating behavior this paper presented
the user's i nterest is dive rse and different and put forward a comprehensive model to
d e f i n e t h e u s e r ' s i n t e r e s t , t h e n t h i s m o d e l w as a p p l i e d t o p e r s o n a l i z e d
r e c o m m e n d a t i o n. C o l l a b o r a t i v e f i l t e r i n g a l g o r i t h m i s o n e o f t h e m o s t s u c c e s s f u l
p e r s o n a l i z e d r e c o m m e n d a t i o n t e c h n o l o g i e s, m e a s u r em e n t o f s i m i l a r i t y b e t w e e n
users is an important part in collaborative filtering algorithm. In this paper, compared
with Pearson and Jaccard similarity measures then proposed a new similarity measure.
A p p l i e d u s e r c o m p r e h e n s i v e i n t e r e s t m o d e l a n d n e w s i m i l a r i t y m e t h o d
i nt o i m p r o v e t h e t r a d i t i o n a l c o l l a b o r a t i v e f i l t e r i n g a l g o r i t h m .
M o v i ele n s d a t a s e t w as u s e d t o t e s t w h e t h e r t h e i m p r o v e d m e t h o d w as v a l i d a t e d o r
not. Results show that the user comprehensive interest model and similarity method can
improve the quality of the personalized recommendation.
Th e i m p r o v e d a l g o r i t h m in t h i s p a p e r p r o v i d e s r e s e a r c h i d e a s t o i m p r o v e t h e
accuracy of recommendation algorithm and the method based on the network user's
r a t i n g b e h a v i o r i s s i m p l e a n d p r a c t i c a b l e . T h e r e s e a r c h r e s u l t s a r e v a l u a b l e f o r
e l e c t r o n i c b u s i n e s s e n t e r p r i s e m a n a g e m e n t; c u s t o m e r r e l a t i o n s h i p m a n a g e m e n t ; t h e
e c o n o m i c b e n e f i t s i m p r o v em e n t a n d s o o n . A b o v e a l l , t h i s p a p e r h a s t h e o r e t i ca l a n d
practical significance.
K e y w o r d s : n e t w o r k u s e r b e h a v i o r, p e r s o n a l i z e d r e c o m m e n da t i o n ,
c o l l a b o r a t i v e f i l t e r i n g a l g o r i t h m, u s e r ' s m u l t i p l e i n t e r e s t s, s i m i l a r i t y
measure