微细通道内流动沸腾压降特性和不稳定性研究

VIP免费
3.0 高德中 2025-01-09 4 4 2.57MB 64 页 15积分
侵权投诉
电子、化工、航空航天及生物工程等诸多工程领域都广泛存在微细尺度通道
内的流动沸腾换热问题,本文对微细通道内流动沸腾压降特性与不稳定性进行了
实验研究。
由于微细通道内流动沸腾流型研究还很不充分,大部分已有的适用于微细通
道的压降关联式是根据分相模型建立的,但本质上这些关联式都没有考虑流型因
素;微细通道内流动沸腾过程中存在一些特殊的不稳定现象,其机理也没有完全
研究清楚。基于此,本文采用去离子水为工质对内径为 0.86mm 的水平单管微细
通道内流动沸腾进行了实验研究,得到如下主要结论:
1微细通道内流动沸腾压降随质量流速的增加而增加,且增加幅度逐渐增
大;热流密度增大,流动沸腾压降增大;进口过冷度对流动沸腾压降的影响并不
显著。均相模型与 Lockhart-Martinelli 模型都不适用于微细通道,Lee-Mudawar
模型预测效果较好。
2根据不同流型建立了各自区域的压降计算模型,将微细通道内流动沸腾
分为弹状流和环状流两部分,分别建立了各自的物理模型,流动沸腾压降计算结
果与实验值有较好的吻合。
3当通道最先出现沸腾起始点时,实验中存在强烈的不稳定性,伴随着倒
流现象的同时,壁面温度和进出口压力均呈现周期性振荡。气泡产生初期,微细
通道内还出现了沸腾起始点壅塞,壁面温度周期性振荡的同时振幅逐渐增大,可
以产生实际的烧毁,沸腾起始点壅塞受质量流速的影响,较小质量流速下壁面温
度突升的幅度较小,即减小质量流速在一些情况下可以减缓沸腾起始点壅塞现象。
4微细通道内流动沸腾不稳定起始点受到质量流速影响,此特征点热流密
度随质量流速的增大而增大。Kennedy 关联式能够较准确的预测流动沸腾不稳定
起始点的热流密度,当质量流速增大时,预测偏差增大。
5高干度工况下,实验发现了一种高频振荡不稳定性状态,此时壁面温度
呈现出在一个较稳定值的基础上周期性突升的现象,这类不稳定性与微细通道内
气泡的生长消亡周期密切相关,是微细通道内流动沸腾的一个特点。
6建立了微细通道内流动沸腾过程中进出口压降时间序列模型,根据自回
归模型的时域特性可以判别流动沸腾的稳定性。
关键词: 微细通道 流动沸腾 压降 不稳定性 气泡
ABSTRACT
Flow boiling heat transfer phenomenon occurs in many engineering practical
situations such as electronic, chemical, aerospace and nuclear power, the
characteristics of pressure drop and instabilities during flow boiling in mini-channel
have been investigated in this paper.
Owing to the research of flow pattern during flow boiling in mini-channel is not
complete, most of pressure drop models for mini-channel are based on separated model,
however essentially to say these models do not consider the effects of flow pattern;
there are some particular instabilities during flow boiling in mini-channel, the
mechanism of these instabilities has not been studied very clear. An experiment was
conducted to investigate the flow boiling in the horizontal tube which diameter is
0.86mm with deionized water, there are some conclusions:
(1) With increasing mass flow rate the pressure drop rises during flow boiling in
the mini-channel, and the growth gradually increasing; Pressure drop increases with
increasing heat flux; and the influence of the sub-cooled of the inlet has not
distinguished. The homogenous model and the Lockhart-Martinelli model are not
suitable for mini-channel, and the Lee-Mudawar model has a good prediction.
(2)According to different flow patterna pressure drop model has been set up, the
flow pattern during flow boiling in mini-channel is divided into two parts named as
slug flow and annual flow, and the two parts make each physical model separately, The
new model has a better result.
(3) Some intensive instability occurs when the onset of nuclear flow boiling
happened, with back-flow behavior, the wall temperature and pressure showed
periodically oscillation. When the beginning of the bubble generation, the block
phenomenon at ONB observed, the wall temperature vibrated and at the same time the
vibration amplitude got larger and larger which lead to actual burnout, The mass flow
rate has a quite effect on the block phenomenonthe growth amplitude of wall
temperature is low when the flow mass rate gets slow.
(4) The mass flow rate has a actual effect on the onset of flow boiling instability,
OFI heat flux rises with increasing mass flow rate. Kennedy model has a more correct
prediction of the OFI heat fluxand the deviation is large when the mass flow rate
increase.
(5) A high frequency instability phenomenon was observed when the vapor
quality is large, at this time the wall temperature sudden rise when the wall temperature
was stable; this instability phenomenon is closely related to the cycle of bubble growth.
(6)The time series model of pressure drop during flow boiling in the mini-channel
has set up, according to the time-domain character of the auto-regressive model, the
instability of the flow boiling has been distinguished.
Key words: mini-channel, flow boiling, pressure drop, instability,
bubble
中文摘要
ABSTRACT
第一章 .................................................................................................................... 1
§1.1 引言 ........................................................................................................................ 1
§1.2 常规通道内流动沸腾研究 .................................................................................... 2
§1.2.1 常规通道内流动沸腾流型研究 ...................................................................... 2
§1.2.2 常规通道内流动沸腾压降特性研究 .............................................................. 2
§1.2.3 常规通道内流动沸腾不稳定性研究 .............................................................. 3
§1.3 微细通道内流动沸腾研究 ..................................................................................... 4
§1.3.1 微细通道定义 .................................................................................................. 4
§1.3.2 微细通道内流动沸腾流型研究 ...................................................................... 5
§1.3.3 微细通道内流动沸腾压降特性研究 .............................................................. 7
§1.3.4 微细通道内流动沸腾不稳定性研究 .............................................................. 8
§1.4 研究现状总结与分析 ............................................................................................ 9
§1.5 本课题的研究内容 ................................................................................................ 10
第二章 微细通道流动沸腾实验装置 .............................................................................. 12
§2.1 实验目的和内容 .................................................................................................... 12
§2.2 实验装置 ................................................................................................................. 12
§2.2.1 实验系统 .......................................................................................................... 12
§2.2.2 实验测量段 ...................................................................................................... 13
§2.3 实验方法 ................................................................................................................ 14
§2.4 测量元件与数据采集系统 .................................................................................... 15
§2.4.1 温度测量元件 .................................................................................................. 15
§2.4.2 压力测量元件 .................................................................................................. 15
§2.4.3 热流密度 .......................................................................................................... 15
§2.4.4 质量流量 .......................................................................................................... 16
§2.4.5 数据采集系统 .................................................................................................. 16
§2.5 实验数据处理与误差分析 .................................................................................... 17
§2.6 实验不确定度分析 ................................................................................................ 18
§2.7 本章小结 ................................................................................................................ 19
第三章 微细通道内流动沸腾压降特性分析 .................................................................. 20
§3.1 概述 ........................................................................................................................ 20
§3.2 微细通道内流动沸腾压降特性 ............................................................................ 20
§3.2.1 质量流速对流动沸腾压降的影响 ................................................................. 20
§3.2.2 热流密度对流动沸腾压降的影响 .................................................................. 21
§3.2.3 不同进口过冷度下流动沸腾压降特性 .......................................................... 21
§3.3 已有压降计算模型分析 ........................................................................................ 22
§3.4 基于流型的压降计算模型 .................................................................................... 27
§3.4.1 建立压降模型的思想 ..................................................................................... 27
§3.4.2 压降模型的建立 ............................................................................................. 27
§3.4.3 基于流型的压降模型分析 ............................................................................. 32
§3.5 本章小结 ................................................................................................................ 33
第四章 微细通道内流动沸腾不稳定性分析 .................................................................. 35
§4.1 概述 ......................................................................................................................... 35
§4.2 微细通道内流动沸腾起始点不稳定性 ................................................................. 35
§4.3 沸腾起始点壅塞 .................................................................................................... 38
§4.4 流动沸腾不稳定起始点计算模型评价 ................................................................ 40
§4.5 微细通道内流动沸腾不稳定性 ............................................................................ 41
§4.6 微细通道内流动沸腾烧毁 .................................................................................... 44
§4.7 压降时序建模与分析 ............................................................................................. 46
§4.7.1 压降时序分析 ................................................................................................. 46
§4.7.2 压降时间序列建模 .......................................................................................... 47
§4.8 本章小结 ................................................................................................................. 49
第五章 结论 ...................................................................................................................... 51
§ 5.1 本文主要结论 ....................................................................................................... 51
§ 5.2 展望 ....................................................................................................................... 52
附录 1:符号表 ................................................................................................................. 54
参考文献 ............................................................................................................................ 55
在读期间公开发表论文和承担科研项目及取得成果 .................................................... 60
.................................................................................................................................. 61
第一章 绪论
1
第一章
§1.1 引言
近些年来,许多高性能工业设备愈来愈向小型化发展,其加工制造技术亦不
断趋于成熟,微电子机械系统(MEMS)也广泛地应用于各工业领域,这使得微
细通道内流动换热机理及相关问题成为研究热点并吸引大量研究者进行这方面的
实验及理论探索。特别要说明的是目前微细加工工艺的发展为微细尺度设备的研
究和应用提供了可能,如定向蚀刻技术Orientation-dependent etching和无电镀
层技术Electroless nickel plating等加工制造工艺都成功的用以加工微细尺度设
备,应用金刚石刀具的精密机床也可以用于加工薄膜上的微细通道,其精度达到
了微米量级。
19 世纪初,细小尺度通道内流动问题的研究就已经开始,但直到 20 世纪中
叶对微细通道内的流动换热问题的系统研究才真正提上日程。这对各种微型系统
特别是微细尺度的冷却系统的发展有着重大的意义。微细尺度通道内流动换热问
题最早被微电子行业所关注[1]。原因在于一些电子芯片运行中伴随散发出极高的
热量,如何将这些热量高效安全的传导出去已成为微电子系统发展的关键课题,
而进一步开发出高效新型的冷却技术对微细尺度流动换热现象的研究提出了更加
迫切的要求。
微型换热器可应用在核动力装置,先进生命科学设备及航空航天仪器上。现
代微细加工技术生产的微小型换热器可以由多个微细尺度管道组成,其微管道当
量直径范围在十几微米到几千微米之间。此外,微型热管被广泛应用于航空航天
等领域,其热传输能力也很强,是一种高性能的微型换热装置。上述这些微型换
热器中均存在大量微细尺度流动换热过程,其中涉及到的单相流动换热或相变流
动换热特性有待于进一步的研究探索。
强化换热的一个有效途径是通过工质相变而实现,流动沸腾是带走热量的一
种高效方式,一般情况下其换热效果要好于单相换热和池沸腾换热。然而在微细
尺度下,一些高效强化的单相换热系数高达 500000W·m-2·k-1,其可传输的热流
密度可达 500w·cm-2这样高的换热值在微细通道内流动沸腾工况下还鲜有报道,
因此有研究者提出疑问,是否还有必要在微小系统内应用流动沸腾换热模式,这
也促使人们对微小通道内相变过程的大量理论及实验问题进行研究[2]
总之,能源、核动力、化工、航空航天及生命科学等诸多工程领域都广泛存
在微细尺度通道内的流动沸腾换热问题。越来越多的微小型设备中采用流动沸腾
换热手段而达到强化换热的目的,在这些微小系统设计及运行的过程中存在一些
微细通道内流动沸腾压降特性和不稳定性研究.pdf

共64页,预览7页

还剩页未读, 继续阅读

作者:高德中 分类:高等教育资料 价格:15积分 属性:64 页 大小:2.57MB 格式:PDF 时间:2025-01-09

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 64
客服
关注