建筑物平面形状对其表面风压特性影响研究

VIP免费
3.0 侯斌 2025-01-09 4 4 5.29MB 100 页 15积分
侵权投诉
随着我国城市规模与建设水平的提高,高层建筑数量越来越多;同时伴随着
人们审美的水平提高,各种形式复杂,外形独特的建筑涌现。由于条件的限制,
大部分高层建筑表面风压特性无法通过《建筑结构荷载规范》展现,因此本文对
高层建筑结构表面风压特性的研究对建筑规划布局和建筑抗风设计有着重要的理
论意义和现实意义。
1)归纳总结风工程的研究内容,阐述了本课题的研究背景与研究意义;
简要介绍了现场实测、风洞试验、理论分析及数值模拟四种研究手段, 归纳总结了
各自的优缺点;回顾建筑结构表面风压的国内外研究现状,指出高层建筑风工程
研究存在的不足之处。
2)介绍了大气边界层自然风特性,讨论了我国《建筑结构荷载规范》与国
外标准规范关于风荷载参数规定的异同,并对比了我国 2001 年版和 2012 年版《建
筑结构荷载规范》关于风荷载参数规定的异同。
3)给出了 CFD 数值模拟的一般步骤;介绍了计算流体力学的基本理论,
包括钝体绕流的基本方程、各种湍流模型以及偏微分方程组等等。此外,介绍
计算流体力学模型建立的注意事项。
4)选取 CAARC 的标准模型进行数值模拟,对比了本文模拟结果与原有五
大研究机构和 TJ-2 风洞试验结果,验证了数值模拟的正确性和可行性。通过讨论
风向角、湍流模型、来流风速网格数量、网格类型等因素对标准模型表面风
压特性的影响发现:风向角对建筑周围流场性质有很大影。Realizable SST
湍流模型的数值模拟精度最高,建议在数值模拟中优先采用。来流风速和网格类
型对数值结果影响较小,而网格数量却有一定影响。当网格较为稀疏时,计算结
果与试验值存在较大偏差,模型不能精确地模拟流体绕流过程。
5选取了《建筑结构荷载规范》规定的 D类地貌,基于 Realizable
流模型,模拟了 182.88m 高的矩形、椭圆形和十字形平面高层建筑模型三维定常
流场,研究了建筑表面平均风压系数分布特征,讨论高宽比、高厚比对建筑表面
平均风压系数的影响。结果表明不同平面形状高层建筑周围流场也不尽相同。
对于特定平面形状的高层建筑,建筑周围流场随着高宽比和高厚比的变化而改变。
本文综合分析规则形平面与异平面形状层建筑的数值模拟结果,总结
了建筑表面风压分布规律,进而为建筑结构抗风设计提供依据。
关键词:风压特性 平均风压系数 算流体力学 高层建筑 平面形状
ABSTRACT
With the increase of urban scale and improvement of construction technology,
high-rise developments in urban areas have rapidly grown. Enhanced aesthetics have
also become significantly more desired, creating the demand for buildings with various
forms and complex shapes to emerge in large numbers. Currently, due to the high
complexity of wind pressure around buildings, the Chinese code titled Load Code for
the Design of Building Structures (LCDBSs), is unable to show complete wind pressure
characteristics on the surface of high-rise buildings. Therefore, research on wind
pressure characteristics against the surface of high-rise buildings, as discussed in this
thesis, has important significance in both aspects of theory and practice.
(1) The main content of the research work on wind engineering is summarized.
Both the foundation of and implications for this subject are introduced. Presented are
the research methods in wind engineering including field measurement, wind tunnel test,
theoretical analysis and numerical simulation. The four methods are introduced and
their respective merits and demerits are given. In addition, by reviewing the current
domestic and overseas research about wind pressure on high-rise buildings, drawbacks
encountered in the research are indicated in Chapter 1.
(2) Chapter 2 discusses the characteristics of natural wind in the atmospheric
boundary layer in the aspects of boundary layer height, mean wind speed profile and
turbulent boundary conditions. The Chinese load standard LCDBSs and some foreign
standards are compared in regards to the similarities and differences of wind load
parameters. Additionally, wind load parameters in both 2001 edition and 2012 edition of
the LCDBSs are compared.
(3) General steps of CFD numerical simulation are given, and then basic theory of
Computational Fluid Dynamics (CFD) including fluid governing equations, turbulence
models and partial differential equations are introduced in Chapter 3. In addition, factors
those need attention when establishing CFD model are determined and discussed.
(4) Chapter 4 numerically simulates a three-dimensional stationary flow field
around the standard model provided by Commonwealth Advisory Aeronautical
Research Council (CAARC). A comparison has been made between simulated results
and wind tunnel test results given by the former five major research institutions and
Tongji University (TJ-2) to verify and prove the correctness and feasibility of the
numerical simulation used in this thesis. Taking the CAARC standard building as an
example, the effects of some factors including wind angel, turbulence model, Wind
velocity, grid number and its type on the wind pressure characteristics are discussed in
detail. We can conclude the following: The wind angle has a great influence on the flow
field around buildings; Realizable and SST have the features of the highest
precision in numerical simulation, and should be given priority in actual project cases;
The wind velocity and grid type have a small influence on numerical results, the grid
quantity has certain influence. When the grid blocks are too coarse, they are unable to
accurately and precisely show the nature of wind environment around building, which is
shown in the fact that a large deviation exists between the numerical results and the
wind tunnel test results. Therefore, the conclusion that the model cannot accurately
simulate real fluid flow can be drawn.
(5) According to the LCDBSs, class D terrain roughness was selected in Chapter 5.
Based on realizable turbulence model, three-dimensional steady flow field
models were created around 182.88m high-rise buildings. Rectangular, oval and
cruciform layouts were used for simulation. Additionally, distribution of mean wind
pressure coefficient against on the building surfaces are studied in detail. Then, the
influences of the depth-width ratio and height-thickness ratio on the mean wind pressure
coefficient are analyzed. Results indicate that flow fields around tall buildings vary with
the architectural layouts. For a special architectural shape, factors such as depth-width
ratio and height-thickness ratio have exerted an obvious effect on wind fields around
buildings.
Overall, using comprehensive analysis of the wind pressure coefficient on high-rise
buildings, with regular-shaped and special-shaped layouts, some conclusions about
wind pressure against on structure are drawn, intending to provide some valid and
effective data for wind-resistant design of high-rise structures.
Key Words: Wind pressure characteristics, Mean wind pressure
coefficient, Computational fluid dynamics (CFD), High-rise building,
Building shapes
中文摘要
ABSTRACT
第一章 ...............................................................................................................1
1.1 引言 ....................................................................................................................1
1.2 结构风工程研究方法 ........................................................................................3
1.2.1 现场实测 .................................................................................................... 3
1.2.2 风洞试验 .................................................................................................... 4
1.2.3 理论分析 .................................................................................................... 5
1.2.4 数值模拟 .................................................................................................... 6
1.3 高层建筑表面风压研究现状 ............................................................................7
1.3.1 国外高层建筑表面风压研究现状 ............................................................ 7
1.3.2 国内建筑表面风压研究现状 .................................................................... 9
1.4 计算平台简介——ANSYS FLUENT 14.0 .....................................................10
1.5 本文主要工作 ..................................................................................................11
第二章 大气边界层自然风特性 ...............................................................................13
2.1 大气边界层概述 ..............................................................................................13
2.2 大气边界层平均风特性 ..................................................................................13
2.2.1 风剖面模型 .............................................................................................. 13
2.2.2 时间特性 .................................................................................................. 17
2.3 大气边界层的脉动风特性 ..............................................................................20
2.3.1 湍流强度(平均强度) .......................................................................... 20
2.3.2 湍流积分尺度 .......................................................................................... 21
2.3.3 相干函数 .................................................................................................. 22
2.3.4 脉动风速功率谱 ...................................................................................... 22
2.4 结构风荷载 ......................................................................................................25
2.4.1 基本风压 .................................................................................................. 25
2.4.2 平均风荷载 .............................................................................................. 25
2.5 建筑结构荷载规范 ..........................................................................................28
2.5.1 风压高度变化系数 .................................................................................. 28
2.5.2 湍流强度 .................................................................................................. 30
第三章 CFD 数值模拟技术及其原理 ......................................................................32
3.1 引言 ..................................................................................................................32
3.2 控制方程 ..........................................................................................................33
3.2.1 连续性方程 .............................................................................................. 33
3.2.2 动量守恒方程 .......................................................................................... 34
3.2.3 能量守恒方程 .......................................................................................... 35
3.2.4 组分质量守恒方程 .................................................................................. 35
3.2.5 控制方程的一般形式 .............................................................................. 35
3.3 离散化方法 ......................................................................................................36
3.3.1 离散化方法 .............................................................................................. 36
3.3.2 计算算法 .................................................................................................. 37
3.3.3 离散格式 .................................................................................................. 38
3.4 网格划分 ..........................................................................................................38
3.4.1 结构化网格 .............................................................................................. 39
3.4.2 非结构化网格 .......................................................................................... 39
3.4.3 混合网格 .................................................................................................. 40
3.5 湍流模拟方法 ..................................................................................................40
3.5.1 湍流数值模拟方法 .................................................................................. 40
3.5.2 湍流模型 .................................................................................................. 41
3.6 其他参数设置 ..................................................................................................44
第四章 CAARC 标准高层建筑模型与数值模拟研究 ............................................46
4.1 引言 ..................................................................................................................46
4.2 CAARC 标准高层建筑模型 ............................................................................46
4.3 计算模型 ..........................................................................................................47
4.3.1 几何模型与网格划分 .............................................................................. 47
4.3.2 湍流模型与边界条件 .............................................................................. 48
4.4 CAARC 数值模拟结果 ....................................................................................49
4.4.1 试验结果分析 .......................................................................................... 49
4.4.2 建筑表面风压分布 .................................................................................. 51
4.5 数值模拟影响因素分析 ..................................................................................53
4.5.1 湍流模型 .................................................................................................. 53
4.5.2 入流风速 .................................................................................................. 54
4.5.3 网格精度 .................................................................................................. 55
4.5.4 网格类型 .................................................................................................. 56
4.6 本章小结 ..........................................................................................................58
第五章 建筑平面布置对其表面风压特性的影响研究 ...........................................59
5.1 引言 ..................................................................................................................59
5.2 试验参数设置 ..................................................................................................59
5.2.1 几何模型与网格划分 .............................................................................. 59
5.2.2 湍流模型与边界条件 .............................................................................. 60
5.3 矩形平面高层建筑风压特性 ..........................................................................61
5.3.1 矩形平面高层建筑模型 .......................................................................... 61
5.3.2 矩形高层建筑表面风压分布 .................................................................. 61
5.3.3 高宽比对建筑表面风压特性的影响 ...................................................... 62
5.3.4 高厚比对建筑表面风压特性的影响 ...................................................... 65
5.3.5 小结 .......................................................................................................... 67
5.4 椭圆形平面高层建筑风压特性 ......................................................................67
5.4.1 椭圆形平面高层建筑模型 ...................................................................... 67
5.4.2 椭圆形高层建筑表面风压分布 .............................................................. 68
5.4.3 高宽比对建筑表面风压特性的影响 ...................................................... 69
5.4.4 高厚比对建筑表面风压特性的影响 ...................................................... 71
5.4.5 小结 .......................................................................................................... 73
5.5 十字形平面高层建筑风压特性 ......................................................................73
5.5.1 十字形平面高层建筑模型 ...................................................................... 73
5.5.2 十字形高层建筑表面风压分布 .............................................................. 74
5.5.3 高宽比对建筑表面风压特性的影响 ...................................................... 76
5.5.4 高厚比对建筑表面风压特性的影响 ...................................................... 79
5.5.5 小结 .......................................................................................................... 83
5.6 本章小结 ..........................................................................................................84
第六章 结论与展望 ...................................................................................................85
6.1 本文结论 ..........................................................................................................85
6.2 展望 ..................................................................................................................86
参考文献 .....................................................................................................................87
在读期间公开发表的论文和承担科研项目及取得成果 .........................................95
...........................................................................................................................97
建筑物平面形状对其表面风压特性影响研究.pdf

共100页,预览10页

还剩页未读, 继续阅读

作者:侯斌 分类:高等教育资料 价格:15积分 属性:100 页 大小:5.29MB 格式:PDF 时间:2025-01-09

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 100
客服
关注