高温后纤维混凝土的力学性能试验研究

VIP免费
3.0 侯斌 2025-01-09 4 4 4MB 71 页 15积分
侵权投诉
混凝土作为主要建筑材已被广泛运用于民用工程领域。混凝土结构
相对于其他建筑材料(如木结构,钢结构)而言具有较好的抗火能力,但当混凝土
结构遇火时,其内部组份的物理和化学性质会发生巨大变化,尤其是高强混凝土结
构在遭受火灾时会发生爆裂现象,使得其承载能力大幅下降并且造成巨大的人员
伤亡及经济损失。通过研究表明在混凝土中加入聚丙烯纤维,能够在一定程度上降
低混凝土高温后爆裂现象的产生,然而聚丙烯纤维熔点较低,受热熔化后会在混凝
土内部产生大量的孔隙,降低混凝土高温后的残余强度,因此采用单一纤维以达到
减少高温对混凝土性能劣化的目的并不理想。本文过试结果分析高温对不
同纤维掺量,不同纤维种类的混凝土力学性能的影响,为纤维混凝土结构火灾后的
修复及加固提供了参考。本文具体内容有以下几个方面:
1)以聚丙烯纤维混凝土的制备过程为例,通过对四组对照试验结果进行分
析,提出了一种搅拌纤维混凝土的方法,解决纤维在与其他组份搅拌过程中容易成
团的问题,从而得到一种均匀、高性能的纤维混凝土。
2)以聚丙烯纤维混凝土为例,分析了单一纤维不同掺入量,不同目标温度
对混凝土峰值应变、弹性模量、抗压强度等力学性能的影响,此外还探讨了高温后
混凝土的表观形态。通过对试验数据进行统计分析,建立了不同掺量下聚丙烯纤维
混凝土的相对抗压强度随目标温度升高的关系式。此外通过引入损伤变量,定量分
析了高温作用下不同聚丙烯纤维掺量混凝土的损伤程度。
3)以聚丙烯纤维混凝土为例,通过进行高温后不同冷却条件下(自然冷却
和喷水冷却)混凝土的力学试验,分析了温度和冷却方式对混凝土的质量损失、
轴抗压强度、峰值应变、杨氏模量等宏观力学性能的影响,并且结合电子显微镜对
混凝土高温后的表观显微结构进行观察微细观层面上探高温对混凝土的劣
化机制。
4以加热温度及纤维含量为变量,在高强混凝土中分别掺入不同含量的聚
丙烯纤维、钢纤维,通过观察高强混凝土及纤维混凝土高温后的外观特征以及测试
其高温前后的质量、抗压强度和抗折强度,分析各类混凝土高温后宏观力学性能的
变化规律。
关键词:混凝土 纤维 高温 力学性能 细观结构 损伤
ABSTRACT
Concrete has been used as a main building material for the construction of civil
engineering structures for more than one hundred years. Although concrete structures
have better fire resistance ability compared to steel structures, the structure of concrete in
terms of its physical and chemical nature is subjected to calamitous changes. Moreover,
when the hybrid concrete suffers from fire which causes spalling and a great decline in
carrying capacity and a large economy loss will be made. Studies show that adding
polypropylene fibers in concrete with a certain extent, the occurrence of concrete spalling
can be reduced. The polypropylene fibers have a lower melting point. It will generate a
lot of channels in the concrete after being heated to melt, reducing the residual strength
of concrete after high temperature. Therefore, it is unsatisfactory to adopt a single fiber
to enhance fire resistance properties of concrete. This paper tests fibers concrete with
different kinds and admixture amount of fibers, which provides some experimental basis
for repairing after structural disaster. The specific contents will show as following
(1) As a reference that in the process of preparation of polypropylene fiber concrete,
through four controlled groups, a method for the preparation of fiber reinforced concrete
was proposed to solve the problem that fiber cluster in the process of mixing with other
components resulting in a uniform, high fiber concrete.
(2) As a reference that polypropylene fiber concrete, the researcher used 120
concrete cubes with different content of the polypropylene fibers and tested mechanical
properties after high temperature of specimen. To analyze the influences of the
mechanical properties of single fibers of different content, concrete peak strain, elastic
modulus, compressive strength were investigated. In addition, researcher also discussed
polypropylene fiber concrete surface morphology after high temperature. Through
statistical analysis of experimental data, the relative compressive strength varying with
temperature was established for a polypropylene fiber concrete under different amount of
admixture. Moreover by defining damage variable, the damage degree of concrete with
different volume of polypropylene fibers after different temperatures can be analyzed
quantitatively.
(3) As a reference that polypropylene fiber concrete, the researcher took mechanical
testing after the concrete cooled (natural cooling and water cooling) from high
temperature. The main effects of temperature and cooling ways on mass loss, uniaxial
compressive strength, peak strain, Young's modulus and microstructure and other
properties were investigated. Moreover by defining damage variable, the damage degree
of concrete with different cooling ways at elevated temperatures can be analyzed
quantitatively.
(4) Choosing the heating temperature and fiber content as variables, high-strength
concrete is added incorporating different levels of polypropylene fibers, steel fibers,
respectively. Observing the appearance of high-strength concrete and fiber concrete after
high temperature. Testing the changes of mechanical properties of macroscopic
performance like compressive strength and bending strength before and after high
temperature. Analyzing the mechanical properties of high strength concrete and various
types of fiber concrete after high temperature.
Key Wordconcrete, fiber, high temperatures, mechanical property,
microstructure, damage
中文摘要
ABSTRACT
第一章 ............................................................................................................... 1
1.1 引言 .................................................................................................................... 1
1.2 国内外混凝土抗火性能的研究 ........................................................................ 1
1.3 纤维混凝土研究现状 ........................................................................................ 3
1.3.1 聚丙烯纤维混凝土 .................................................................................. 3
1.3.2 钢纤维混凝土 .......................................................................................... 4
1.3.3 混杂纤维混凝土 ...................................................................................... 5
1.4 高温后纤维混凝土微细观机理分析 ................................................................ 6
1.5 本文主要工作及技术路线 ................................................................................ 7
1.5.1 本文主要工作 ........................................................................................... 7
1.5.2 技术路线 .................................................................................................. 7
第二章 原材料的性能与试验方法 ............................................................................. 9
2.1 原材料的性能 .................................................................................................... 9
2.1.1 水泥 .......................................................................................................... 9
2.1.2 .............................................................................................................. 9
2.1.3 石子 ........................................................................................................... 9
2.1.4 聚丙烯纤维 .............................................................................................. 9
2.1.5 钢纤维 .................................................................................................... 10
2.1.6 减水剂 .................................................................................................... 10
2.1.7 粉煤灰 ..................................................................................................... 11
2.2 纤维混凝土搅拌方法 ....................................................................................... 11
2.2.1 原材料 ..................................................................................................... 11
2.2.2 制备方法 ................................................................................................. 11
2.3 试验方案 .......................................................................................................... 14
2.4 试验方法 .......................................................................................................... 15
2.5 本章小结 .......................................................................................................... 17
第三章 不同聚丙烯纤维含量对混凝土高温后力学性能的影响 ........................... 19
3.1 引言 .................................................................................................................. 19
3.2 高温后试件的表观形态 .................................................................................. 19
3.3 试件破坏形式 .................................................................................................. 20
3.4 杨氏模量 .......................................................................................................... 21
3.5 抗压强度 .......................................................................................................... 23
3.6 峰值应变 .......................................................................................................... 30
3.7 高温下聚丙烯纤维混凝土损伤的定量计算 .................................................. 31
3.8 本章小结 .......................................................................................................... 33
第四章 不同冷却方式对聚丙烯纤维混凝土高温后力学性能的影响 ................... 34
4.1 引言 ................................................................................................................... 34
4.2 试件的表观形态与显微结构 ........................................................................... 34
4.3 质量损失率 ....................................................................................................... 38
4.4 杨氏模量与冷却方式的关系 ........................................................................... 39
4.5 抗压强度 ........................................................................................................... 40
4.6 峰值应变 ........................................................................................................... 43
4.7 不同冷却方式下聚丙烯纤维混凝土高温后损伤的定量计算 ....................... 44
4.8 本章小结 ........................................................................................................... 44
第五章 混杂纤维混凝土高温后的力学性能分析 ................................................... 47
5.1 引言 ................................................................................................................... 47
5.2 高温后试件的表观形态与显微结构 ............................................................... 47
5.2 质量损失率 ....................................................................................................... 51
5.3 抗折强度 ........................................................................................................... 52
5.4 抗压强度 ........................................................................................................... 54
5.5 机理探讨 .......................................................................................................... 56
5.6 本章小结 .......................................................................................................... 57
第六章 结论与展望 ................................................................................................... 59
6.1 总结 .................................................................................................................. 59
6.2 展望 .................................................................................................................. 60
参考文献 ..................................................................................................................................... 61
在读期间公开发表的论文和承担科研项目及取得成果 ......................................... 67
致谢 ............................................................................................................................. 69
第一章 绪论
1
第一章
1.1 引言
火作为一种自然力量在造福人类的同时也给人类的生命财产安全造成了无
法挽回的危害。根据公安部消防局的统计数据,仅 2012 年全国共发生 15 万起火
灾,死伤人数高达 1603 人,造成直接及间接经济损失超过 20 亿元,而 在全世界范
围内,每年火灾所导致死亡人数高达十多万人[1]随着城市化不断的发展,人口密
度也越来越大,火灾发生的频率也越来越高。在众多火灾类型中,建筑火灾是造成
经济损失最为重大,人身伤亡最为惨重,危害程度最严重的一种,也是最需要加强
防范的[2]
混凝土作为当今社会主要的建筑材已被广运用于用及公用建筑领域
虽然混凝土结构相对于钢结构具有较好的阻燃性,但 当火灾发生时,在高温的作用
下混凝土内部组分会发生一系列的物理及化学变化,导致其力性能发生大的
改变。根据已有的试验研究成果[3-5]表明混凝土结构在高温作用力学性能的下降
与基体强度、配合比、火灾温度、作用时长、升温速率、冷却方式配合比及养护
方式有着十分密切的关系。从宏观方面上来看,混凝土的强度、弹性模量均随着温
度升高而下降,并且温度越高,下降的幅度越快,这使得其承载能力下降。在混凝
土基体中添加聚丙烯纤维、金属纤维(如钢纤维)、碳纤维及玻璃纤维可以提高混
凝土结构高温后的残余抗压强度,改善其抗火能力,因此纤维增韧混凝土已被用来
对已受损的建筑物进行加固并且也被用来设计新的建筑结构。
1.2 国内外混凝土抗火性能的研究
上世纪初,西方科学家就对高温的残余力学性能研究
ASTM(美国材料与试验协会)结合火灾时的升温过程建议了标准的温度-时间
线,并制定了相应的规范[6]Schneider[7]总结分析了大量有关高温后混凝土力学性
能的试验方法及试验结果,并且指出试件尺寸、升温过程、加载方式、加载设备的
精度均影响着试验结果。Li Purkiss[8]Khoury[9]Anderberg[10]Schneider[7]
建议的高温后普通混凝土的本构模型进行修正并结合试验数据,给出了式(1-1
及式(1-2):
0
0
60
() 800 60 800
740
ET
ET TT
E


℃ ℃
(1-1)
32
u u0
( ) 0.00165( ) 0.03( ) 0.025( ) 1.002
100 100 100
T
T T T
T


 


(1-2)
高温后纤维混凝土的力学性能试验研究.pdf

共71页,预览8页

还剩页未读, 继续阅读

作者:侯斌 分类:高等教育资料 价格:15积分 属性:71 页 大小:4MB 格式:PDF 时间:2025-01-09

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 71
客服
关注