高炉矿渣粉加固上海软土地基的力学特性试验研究

VIP免费
3.0 侯斌 2025-01-09 5 4 4.39MB 80 页 15积分
侵权投诉
摘要
矿渣是钢铁厂生铁生产、冶炼时的副产物,矿渣的排放、堆积、处理会耗费
巨额的人力、物力和财力,既侵占土地,也带来了环境问题。因此,如何合理有
效地利用矿渣是目前国内外研究的一个热门课题。
本文针对上海地区软土的特点,采用单掺高炉矿渣微GGBS)或掺高炉
矿渣微粉辅以石灰作为碱性激发剂,对上海地区软土进行固化处理,通过界限含
水量试验、三轴压缩试验、无侧限抗压强度试验、扫描电镜及电阻率测试手段,
从宏观力学指标和微观结构特性方面,研究了固化土的物理性质指标、应力-应变
关系、强度、电阻率变化规律以及固化土的微观结构特征。
本文主要研究成果为:
1. 通过界限含水量试验,得到了 GGBS 掺入量、不同配合比 GGBS-Lime
养护龄期对固化土的液限、塑限及塑性指数的影响规律。固化土的液限与 GGBS
的水化程度有关。GGBS-Lime 固化剂对软土的液限、塑限及塑性指数的改变较之
单掺 GGBS 固化土的改变更为明显。
2. 通过三轴压缩试验UU及无侧限抗压强度试验,研究了 GGBS 掺入量、
不同配合比 GGBS-Lime、养护龄期及含水量对固化土的应力-应变关系、强度、
粘聚力、内摩擦角的影响。单掺 GGBS 固化土的 GGBS 最优掺入量为 14%。当
GGBS-Lime 配合比为 GGBSLime=15%5%,养护 90 天龄期时固化效果好,
且强度依然呈上升趋势。总体上 GGBS-Lime掺入比重介于 2:1~3:1时石灰对 GGBS
的碱激发效果最好,固化土强度最高。
3. 通过电阻率试验,定量分析了 GGBS 掺入量、GGBS-lime 配合比、养护龄
期对固化土电阻率的影响规律。通过不同配比、不同养护龄期试样的固化强度统
计拟合分析,得到了固化土电阻率与强度的相关关系。建立了某一电阻率与 GGBS
掺入量的固化土强度与另一已知电阻率 GGBS 掺入量固土强度的强度相关
系,并建立根据已知电阻率及掺入量的某 GGBS-Lime 配合比固化土的强度预测。
4. 采用扫描电镜技术,对 GGBS 固化土、GGBS-Lime 固化土的微观结构进
行了定性分析。GGBS 掺入量越高,养护龄期越长,固化土的孔隙越少、越小。
对于 GGBS-Lime 固化土,GGBS-Lime 掺入比重介于 2:1~3:1 之间,养护龄期越
长,固化土的孔隙越少,结构性越好,强度越高。
关键词:上海软土 GGBS 度特 电阻 固化 最优配合比
ABSTRACT
Shanghai, which is Quaternary alluvial plain of the Yangtze River Delta, is typical
area of soft ground with the character of high natural water content, void ratio and
compression index within 40m in depth. Moreover, it has an obvious rheological
characteristics and rather bad engineering geological property. Using natural ground as
bearing stratum for shallow foundation is not applicable to the construction of
Shanghai area. It is one of the most important, difficult and hot issues for geotechnical
engineering to find methods of stabilizing soft soil in Shanghai.
According to the typical engineering properties of soft soil in Shanghai, the
solidification/ stabilization of soft soil using steel industry wasted materials - blast
furnace slag as main agent and lime as additives was studied in this paper. Laboratory
experiments and theoretical analysis were done to study the soil mechanics
characteristics, stress-strain relations, strength property, electrical indicators and
microstructural features of stabilized soft soil in Shanghai using GGBS.
The main findings of this article are:
(1) The influences of GGBS incorporation, GGBS-lime mix proportion and curing
time on liquid limit, plastic limit and plasticity index of stabilized soil were studied
through crucial water content coefficient test. Compared with soft soil that solely
added GGBS, the influences of GGBS-lime hardener on liquid limit, plastic limit and
plasticity index of soft soil in more obvious. Adding GGBS will cause the decline of
liquid limit and plastic limit in the early curing time. The plasticity index also declined
because the decrease amplitude of liquid limit is larger than plastic limit. With the
increases of curing time, liquid limit increased due to the slowdown of the degree of
hydration of GGBS. And plastic limit changes little, while plasticity index was
improved.
(2) The influences of GGBS incorporation, GGBS-lime mix proportion, curing
time and water content on stress-strain relations, strength property, failure strain and
internal friction angle of stabilized soil were studied through Static Triaxial Test and
Unconfined Compression Test. The stabilized soil, which was solely added GGBS, had
limited and slow growth on strength, and most of the soil samples had plastic failure
after 90d curing. The soil samples had brittle failure when it has 14d curing and
GGBS-lime mix as follows: GGBSlime=15%:5%GGBSlime=10%10%GGBS
lime=7%3%. The strength is higher than 22% cement stabilized soil after 90d curing,
and keep increasing. Overall, in order to reach the best curing effect, the mixing ratio
of GGBS-Lime is supposed to between 2:1 and 3:1.
(3) The influences of GGBS incorporation, GGBS-lime mix proportion and curing
time on dynamic modulus and specific conductance index of stabilized soil through
Dynamic Modulus Test and Conductivity Test.
(4) Scanning electron microscope (SEM) was used to analysis the microstructure
of GGBS stabilized soil and GGBS-lime stabilized soil. For soil that solely added
GGBS, with higher GGBS mixing ratio and the curing time longer, the pore in the soil
is getting less and smaller. For GGBS-lime stabilized soil, with the GGBS-Lime
mixing ratio between 2:1-3:1 and the curing time longer, the porosity is less, the
structural property is better and the strength is higher than before.
Keywords: Shanghai soft soil, GGBS strength characteristic, specific
conductance, curing mechanism, best mix proportion.
摘要 ...................................................................................................................... 6
ABSTRACT.......................................................................................................... 7
.................................................................................................................. 9
第一章 ....................................................................................................... 1
1.1 研究背景及意义 .................................................................................... 1
1.2 国内外的研究现状 ................................................................................ 1
1.2.1 软土特性 ..................................................................................... 1
1.2.2 矿渣的组成及其性质 .................................................................. 3
1.2.3 矿渣固化土研究现状 .................................................................. 4
1.3 存在问题 .............................................................................................. 10
1.4 论文的主要内容 .................................................................................. 11
第二章 高炉矿渣粉改良 Atterberg 界限特性研究............................................ 12
2.1 概述...................................................................................................... 12
2.2 试验概况 .............................................................................................. 12
2.2.1 试验材料 ................................................................................... 12
2.2.2 试验方案和试验方法 ................................................................ 12
2.3 试验结果分析 ...................................................................................... 13
2.3.1 GGBS Atterberg 界限的影响 ........................................................ 13
2.3.2 GGBS-Lime Atterberg 界限的影响 .............................................. 16
2.3.3 GGBS、石灰和 GGBS-Lime Atterberg 界限影响的对比分析 ..... 19
2.4 本章小结 .............................................................................................. 20
第三章 高炉矿渣固化土的力学特性研究 ........................................................ 22
3.1 概述...................................................................................................... 22
3.2 试验概况 .............................................................................................. 22
3.2.1 试验材料 ................................................................................... 22
3.2.2 试验方法 ................................................................................... 22
3.2.3 试验方案 ................................................................................... 25
3.3 固化土粘聚力及内摩擦角变化规律 .................................................... 26
3.3.1 养护龄期对固化土粘聚力及内摩擦角的影响.......................... 26
3.3.2 掺入量对固化土粘聚力及内摩擦角的影响 ............................. 29
3.4 固化土的无侧限抗压强度 ................................................................... 31
3.4.1 养护龄期对固化土无侧限抗压强度的影响 ............................. 31
3.4.2 掺入量对固化土无侧限抗压强度的影响 ................................. 35
3.4.3 含水量对固化土无侧限抗压强度的影响 ................................. 38
3.5 高炉矿渣粉固化土应力应变关系.................................................... 45
3.7 本章小结 .............................................................................................. 49
第四章 矿渣固化上海软土的微观结构研究 .................................................... 51
4.1 概述...................................................................................................... 51
4.2 试验概况 .............................................................................................. 51
4.2.1 试验材料 ................................................................................... 51
4.2.2 试验方案及试验方法 ................................................................ 51
4.3 试验结果分析 ...................................................................................... 53
4.3.1 GGBS 掺入量对固化土体微观结构的影响 ............................ 53
4.3.2 养护龄期对固化土体微观结构的影响 ..................................... 54
4.3.3 GGBS-lime 固化土的微观结构变化特征 .................................. 56
4.4 本章小结 .............................................................................................. 57
第五章 高炉矿渣固化土的电学特性 ................................................................ 59
5.1 概述...................................................................................................... 59
5.2 试验概况 .............................................................................................. 59
5.2.1 试验材料 ................................................................................... 59
5.2.2 试验方案及试验方法 ................................................................ 59
5.3 试验结果及分析 .................................................................................. 60
5.3.1 养护龄期对电阻率的影响 ........................................................ 60
5.3.2 掺灰量对电阻率的影响 ............................................................ 62
5.4 基于电阻率的固化土强度预测 ........................................................... 63
5.4.1 基于电阻率 GGBS 固化土强度预测 ........................................ 63
5.4.2 基于电阻率的 GGBS-Lime 固化土强度预 ........................... 66
5.5 本章小结 .............................................................................................. 68
第六章 结论与展望 ........................................................................................... 69
参考文献 ............................................................................................................ 72
在读期间公开发表的论文和承担科研项目及取得成果 ................................... 76
一、论文..................................................................................................... 76
二、专利..................................................................................................... 76
................................................................................................................ 77
第一章
1
第一章
1.1 研究背景及意义
矿渣是钢铁厂进行生铁生产冶炼的副产物,是高炉内分解所得的 CaOMgO
1400~1600℃下与铁矿石中的土质成分及焦炭中的灰分发生反应形成熔融物,
经空气或水淬急冷处理形成粒状颗粒物。
据不完全统计,我国的钢铁工业每生产 1 t 铁,会排放高炉矿渣 0.3 t~1 t
2012 年全国钢铁产业的粗钢产量粗略统计已超 7亿t,这些粗钢的生产过程中矿
渣的排放、堆积、处理都会耗费巨额的人力、物力和财力,既侵占土地,也带来
了环境问题。 因此,如何合理有效地利用矿渣是目前国内外研究的一个热门课题。
我国目前利用矿渣的主要途径是生产矿渣水泥及水泥混凝土掺合料、制备微晶玻
璃以及制备土壤固化剂等[1]
随着十二五规划的顺利进行,国民经济得到快速发展,各项基础设施建设日
益兴起,高速公路、高速铁路及机场的大量建设,地基处理显得越来越重要,各
类工程对高性价比土壤固化剂的需求日趋增大。我国软土的分布十分广泛,软土
地基往往给工程施工带来诸多难题,如地基承载力不足或工程施工及使用阶段地
基沉降控制较为困难等。在软土地基的处理中,常使用波特兰水泥作为固化剂,
而在水泥生产过程中会大量排放温室气体如
2
CO
平均生产 1 t 熟料需排放 0.95 t
2
CO
且消耗大约 500 MJ 能量[2]这些能量在我国主要依靠不可再生的煤炭等化
石燃料提供,而且燃烧这些化石燃料会附带其他有害气体如
2
SO
2
NO
及大量粉
尘的排放,带来雾霾等严重的环境问题。
研究采用高炉矿渣作为软土固化剂不仅可以降低软土地基处理的成本,同时
实现了“变废为宝”的目的,节约了能源、保护了环境,从而达到降低施工成本、
提高施工质量且兼顾绿色环保的和谐统一。
1.2 内外的研究现状
1.2.1 软土特性
软土是淤泥和淤泥质土的总称,是在静水或非常缓慢的流水环境中沉积并经
生化作用形成 [3,4]具有天然孔隙比大于或等1.0天然含水量大于液限、孔隙
比大、压缩性高、抗剪强度低、固结系数小、固结时间长、灵敏度高、扰动性大、
透水性差、土层层状分布复杂、各层之间物理力学性质相差较大等特点。软土地
基承载力低、变形大,且一般伴随有较大的不均匀变形 变形稳定历时较长,
比较深厚的软土层上,建筑物的沉降往往持续数年乃至数十年之久[5,6]
在我国,软土的分布十分广泛[7],表 1-1 统计显示了我国不同地质成因的软
上海理工大学硕士学位论文
2
土分布状况。
1-1 我国软土分布表
分布情况
主要分布在东海、黄海、渤海等沿海地区
洞庭湖、太湖、鄱阳湖、洪泽湖周边
长江中下游、淮河平原、松辽平原、闽江下游
西南、南方山区或丘陵区
滨海沉积又称近岸沉积、滨岸带沉积,是在河流、波浪、潮汐、海流的作用
下,于近海岸水深 020 米范围内的沉积。主要由砾、砂、粉砂及泥组成。沉积
特征多取决于物质来源和动力环境。通常分为海滩沉积潮间带沉积泻湖沉积、
三角洲沉积。
湖泊沉积是入湖水流挟带的泥沙,由于水流流速减小而下沉。粗粒泥沙常沉
积在河流入湖处,越向湖心,沉积的颗粒越细。
河滩沉积是由较大的河流所经过流域的河边及河口处由于泥沙沉积而形成的
天然滩涂土地。中国著名的河滩地有黄河三角洲,长江三角洲等都属于河滩沉积
地。河滩沉积的典型粒径分布为:砂粒 5%~10%粉粒 20%~40%粘粒 35%~60%
有机质含量为 1%~10%其工程地质特征是具有纹理及层理特性,有时夹细砂层,
一般不会有很厚的均匀沉积,有明显的二元结构。由于河流的复杂作用,常夹有
各种成分的透镜体(如淤泥、粗沙、砂卵石等)往往造成地基土层不均匀、承载
力变化大的特点。
上海地区浅部软土普遍发育,属于较为典型的天然软土地基区,软土主要为
滨海沼泽相堆积类型。软土层主要为埋深在 4m 左右的第③层淤泥质粉质粘土(上
海市工程建设规范《岩土工程勘察规范》DGJ08-37-2002 中地基土层序号,下同)
及其下部的第④层淤泥质粘土,其主要特性是高含水量、大孔隙比、高压缩性、
低强度等,在工程建设中表现出一系列不良程地质现象,从而影响建()筑物
的使用。
故上海地区软土地基处理的目标是要提高软土地基的强度,保证地基的稳定,
降低软土的压缩性及渗透性[6]减少基础的沉降和不均匀沉降,提高地基耐久性
及动力特性,确保建筑物的安全和正常使用。国内外大量的软土地基工程实践表
明,为满足地基的强度、变形及抗震等要求,必须对软土天然土层进行人工处理
[2,4]
第一章 绪论
3
1.2.2 矿渣的组成及其性质
1.2.2.1 概念
矿渣是钢铁厂冶炼生铁时产生的副产物,通过通气降温或水淬降温等方式进
行急冷处理而形成的粒状固体颗粒物,称之为粒化高炉矿渣或水淬矿渣。
1.2.2.2 矿物组成
由于矿石的成分或所用来生产的生铁的种类的差别,以及具体生产的操作及
工艺不同的影响,矿渣的化学组成及性质均有所相同。
矿渣的矿物组成与熔融矿渣的冷却条件有关。缓慢冷却时会得到稳定的固体,
Ca-Al-Mg 硅酸盐晶体。高炉矿渣中的各种氧化物成分以各种形式的硅酸盐矿
物形式存在。碱性矿渣(碱度系数>1)的主要晶相为硅酸二钙(
SC2
)和钙铝黄长石
(
ASC2
);酸性矿渣(碱度系数<1)则以硅酸钙和钙长石为主[8]
1.2.2.3 化学组成
从化学成分组成上看,高炉矿渣属于硅酸盐质材料[9] 高炉矿渣中主要的化
学成分是
2
SiO
32OAl
CaO
MgO
MnO
FeO
S等。此外,有些矿渣
含有微量的
2
TiO
52OV
ONa2
BaO
52OP
32OCr
及硫化物等。在高炉矿渣中
CaO
2
SiO
32OAl
所占比重高达 90%以上。几种常见的高炉渣的化学成分见表
1-2[10]
1-2 高炉矿渣(GGBS)化学成分
矿渣种类
化学成分/ %
CaO
2
SiO
32OAl
MgO
MnO
FeO
S
2
TiO
52OV
普通矿渣
30~50
31~44
6~18
0.05~2.6
0.2~1.5
0.2~2
锰铁矿渣
28~47
22~35
7~22
1~16
3~24
1.2~1.7
0.17~2
6~31
0.06
钒铁矿渣
20~30
19~32
13~17
1~9
0.3~1.2
1.2~1.9
0.2~0.9
矿渣通常还含有少量的其他物质,如氟化物、
32OFe
FeO
52OP
ONa2
OK2
52OV
等。这些物质通常情况下含量并不高,对矿渣性质的影响也不大。
某些土壤固化剂是以矿渣或矿渣组合物为主要原料,其中矿渣掺量可高达
70%以上[11],并配合适量的碱性激发剂以及表面活性剂混合粉磨而成,此类固化
剂固化土体主要是依靠矿渣微粉自身的水解水化以及其水化产物与土壤颗粒之间
的化学反应产物胶结从而共同提高土体的强度[12]由于粒化高炉矿渣具有潜在的
胶结反应性能,为了进一步发挥这一特性,将其人工研磨成同水泥一样细度的颗
粒,即磨细高炉矿渣GGBS研磨后的矿渣粉表面比达到 320-380
kgm/
2
,重
度在 2.85-2.94 之间。GGBS 是可以被石灰、熟料、混凝土的粉磨混合物所激发的
高炉矿渣粉加固上海软土地基的力学特性试验研究.pdf

共80页,预览8页

还剩页未读, 继续阅读

作者:侯斌 分类:高等教育资料 价格:15积分 属性:80 页 大小:4.39MB 格式:PDF 时间:2025-01-09

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 80
客服
关注