辐射时间序列法在大空间建筑辐射热转移负荷计算中的应用研究
VIP免费
摘 要
大空间建筑分层空调负荷作为大空间空调设计的关键因素,与空调能耗密切
相关。目前,大空间建筑分层空调负荷计算除了考虑空调区的全室负荷,还包括
非空调区向空调区的对流热转移和辐射热转移形成的对流热转移负荷和辐射热
转移负荷,其中辐射热转移负荷部分的计算采用了大量经验数值,对大空间建筑
室内热环境研究方面的指导存在一定的不科学性。为了准确计算大空间辐射热转
移负荷,完善大空间分层空调负荷计算,本课题组提出采用辐射时间序列法计算
大空间分层空调的动态辐射热转移负荷,进一步基于 ASHRAE 文献中的辐射传
递函数系数研究了大空间常见建筑空调区的辐射时间因子,并总结大空间空调区
的辐射转移热转化为辐射热转移负荷的比例,即辐射热转移负荷比例系数 C2。
本文首先运用理论计算的方法分析了四种不同辐射负荷算法,即 谐波反应法、
反应系数法、Z传递函数法以及辐射时间序列法,进一步说明采用辐射时间序列
法计算房间动态辐射负荷的优越性。其次,通过热平衡实验采用壁面对流辐射分
离法直接分离房间辐射得热,避免了估量辐射得热占比误差,研究了房间局部区
域的辐射负荷变化特性并进一步印证了辐射时间因子与辐射传递函数系数间的
矩阵关系,具体实验结果表明:①在完整周期内,采用壁面对流辐射分离法计算
辐射负荷的平均相对误差为 5.3%,而传递函数法为 7.2%,则认为辐射传递函数
系数受壁面热流与换气次数变化的影响可以忽略;②对于实验不同工况,房间各
面辐射负荷变化规律相似,且与加热面相对的壁面辐射负荷最大;③在变壁面热
流条件下,房间各壁面辐射负荷峰值随壁面热流增大而增大,且辐射负荷达到峰
值的时间逐渐减小;④在变房间换气次数条件下,房间屋面辐射负荷随着房间换
气次数的增加而增大,且延迟时间变化不明显,但其它各面随着换气次数的增大
均减小,且辐射负荷达到峰值的时间逐渐减小。
其次,以 ASHRAE 文献中普通房间辐射传递函数系数和相应房间放热衰减
度和延迟时间为基础,对比大空间空调区的放热衰减度和延迟时间可得常见大空
间空调区的辐射时间因子。针对第一类大空间建筑总结出不同外墙结构的辐射热
转移负荷系数值 C2均值分别为 0.95、0.91、0.89、0.86、0.86、0.87 和0.85,相
应峰值负荷比为 0.96、0.94、0.91、0.88、0.86、0.86 和0.83;第二类大空间建筑
总结出不同楼板形式的辐射热转移负荷系数值 C2均值分别为 0.90、0.88 及0.87,
相应峰值负荷比为 0.88、0.89 和0.86,而针对只存在一面外墙三面内墙结构的第
三类大空间建筑,总结出不同内墙结构的辐射热转移负荷系数值 C2均值分别为
0.88、0.86、0.86 和0.87,且相应峰值负荷比为 0.89、0.88、0.86 和0.86。
本文首次采用辐射时间序列法研究大空间空调区辐射转移负荷,其研究成果
为大空间空调区辐射转移负荷的计算提供了理论基础,并进一步完善了大空间分
层空调负荷计算,对辐射时间序列法在工程设计中的应用具有一定的指导意义。
关键词:大空间建筑 辐射时间序列法 辐射传递函数系数 辐射时间因子 辐射
热转移负荷 辐射负荷比例系数
ABSTRACT
As a key factor of the air conditioning design in large space, the stratified
cooling load is closely related to the energy consumption of air conditioning. At
present, the stratified cooling load not only do include the all room load, but it also
include the convection transfer load and radiant transfer load formed by the
convection transfer heat and radiant transfer heat between un-air-conditioned area and
air-conditioned area, but the calculation of radiant transfer load uses a lot of empirical
value, which is a certain unscientific guidance on the reserarch of indoor thermal
environment in large space. In order to calculate the radiant load of large space more
accurately, and perfectly compute the stratified cooling load of large space, in this
group, it is proposed to use the radiant time series method to calculate the dynamic
radiant transfer load of stratified air conditioning in large space, and furtherly
discusses the radiant time factors of common materials about the large space buildings
based on the radiant transfer function coefficients of ASHRAE database, and finally
concludes the ratio factor C2 of radiant transfer load about the common
air-conditioned area in large space buildings, that is the conversion ratio between the
radiant transfer load and radiant heat transfer.
In this paper, according to the theoretical calculation method, the room radiant
load is compared and analyzed firstly by the four different radiant load methods,
including harmonic reaction method, reaction coefficient method, Z transfer function
method and radiant time series method. Furthermore, the results illustrate that it is
excellent to calculate the room dynamic radiation load by using the radiant time series
method. Secondly, in a thermal equilibrium experiment, the convective and radiant
separation method is adopted to obtain the radiant heat directly, which avoids the
accounting errors. Moreover, this paper also analyzes the radiant characteristics of
room on each side, and further verifies the matrix relationship between radiant time
factors and radiant transfer function coefficients. The results also show that: ①in a
complete cycle, the average relative difference is 5.3% for the wall convection and
radiation separation method, and 7.2% for transfer function method, which reflects
that it can be ignored the impacts of wall heating values and ventilation rates on the
room radiant transfer function coefficients; ②For the experiment in different
conditions, the variation laws of each wall are similar, with the radiant load of the
wall opposed to the heating surface being maximum; ③In changing wall heating
conditions, the maximum radiant load of each walls increase along with the wall
heating values, with the time to reach maximum radiation load gradually shorten;
④In changing room ventilation rates conditions, the radiant load of room roof
increase along with the ventilation rates, and the delay time do not change
significantly, but each other walls are reduced with the increase of ventilation rates,
and its time reaching maximum gradually decreases.
Again, based on the radiant transfer function coefficients and its room
attenuation and delay time of ASHRAE database, the radiant time factor are obtained
by comparing their attenuation and delay time. In regard to the first large space
building, the mean ratio C2 of radiant transfer load respectively is 0.95, 0.91, 0.89,
0.86, 0.86, 0.87 and 0.85 for different exterior structures, corresponding the ratio of
mamxium load is 0.96, 0.94, 0.91, 0.88, 0.86, 0.86 and 0.83 respectively, and for
second large space building, the mean ratio C2 respectively is 0.90, 0.88 and 0.87 for
different floors,, also corresponding the ratio of mamxium load is 0.88, 0.89 and 0.86
respectively. However, for the third large space building where there are only one side
of exterior walls and three sides of the interior structures, the mean ratio C2
respectively is 0.88, 0.86, 0.86 and 0.87 for different interior structures, and the ratio
corresponding mamxium load is 0.89, 0.88, 0.86 and 0.86 respectively.
In this paper, it is first to study the radiant transfer load of air-conditioned area in
large space using the radiation time series method, and the research results provide a
theoretical basis for the calculation of radiant transfer load in a common large space
building, furthermore, they also improve the load calculation of stratified air
conditioning in large space, and provide some guidances for its in engineering design
applications.
Key word: large space building, radiant time series method, radiant transfer
function coefficient, radiant time factor, radiant heat transfer load, the ratio of
radiant load
目 录
中文摘要
ABSTRACT
第一章 绪 论................................................................................................................ 1
1.1 课题研究背景及现状....................................................................................... 1
1.1.1 建筑空调负荷计算方法发展历程 .......................................................... 2
1.1.2 大空间辐射热转移负荷计算特点分析 .................................................. 3
1.1.3 辐射负荷计算软件介绍 .......................................................................... 4
1.2 辐射时间序列法的国内外研究现状............................................................... 5
1.2.1 辐射时间序列法特点 .............................................................................. 5
1.2.2 辐射时间序列法的国外研究现状 .......................................................... 5
1.2.3 辐射时间序列法的国内研究现状 .......................................................... 6
1.3 课题内容及意义............................................................................................... 7
1.3.1 研究目标及意义 ...................................................................................... 7
1.3.2 主要研究内容 .......................................................................................... 7
第二章 建筑辐射负荷计算方法比较.......................................................................... 9
2.1 不同辐射负荷计算方法介绍........................................................................... 9
2.1.1 各种辐射负荷计算方法对比 .................................................................. 9
2.1.2 辐射时间序列法计算原理 .................................................................... 18
2.2 典型建筑辐射负荷计算方法的对比............................................................. 20
2.2.1 案例介绍 ................................................................................................ 20
2.2.2 建筑辐射负荷各方法计算结果 ............................................................ 21
2.2.3 计算结果的分析对比 ............................................................................ 25
2.3 本章小结......................................................................................................... 29
第三章 基于辐射时间序列法的辐射负荷实验研究................................................ 30
3.1 实验方案介绍................................................................................................ 30
3.1.1 实验系统 ................................................................................................ 30
3.1.2 实验方法 ................................................................................................ 33
3.1.3 实验工况确定 ........................................................................................ 37
3.1.4 实验原理 ................................................................................................ 37
3.2 基于辐射时间序列法的辐射负荷机理实验................................................. 40
3.2.1 辐射负荷及其辐射传递系数实验结果与分析 ................................... 40
3.2.3 辐射负荷特性实验结果与分析 ............................................................ 43
3.4 本章小结......................................................................................................... 46
第四章 辐射时间序列法在大空间辐射负荷计算中的应用.................................... 47
4.1 建筑蓄放热特性与结构类型参数分析......................................................... 48
4.1.1 房间建筑结构蓄热体常规参数介绍 .................................................... 48
4.1.2 房间建筑结构类型总结 ........................................................................ 49
4.2 ASHRAE 文献中辐射传递函数系数的归纳 ................................................ 51
4.2.1 ASHRAE 文献中蓄放热特性参数计算 ............................................... 51
4.2.2 不同围护结构的辐射时间因子 ............................................................ 55
4.3 大空间建筑辐射时间因子计算..................................................................... 60
4.3.1 大空间建筑材料各参数计算 ................................................................ 61
4.3.2 常见大空间建筑材料的辐射时间因子 ................................................ 65
4.3.3 大空间建筑空调区与普通房间换热特性的类比标准深化 ................ 70
4.4 常见大空间建筑空调区 C2值的总结 ........................................................... 73
4.4.1 常见大空间建筑动态辐射热转移负荷计算 ........................................ 74
4.4.2 常见大空间建筑空调区 C2值计算 ....................................................... 84
4.4.3 辐射时间序列法在大空间中的应用 .................................................... 86
4.5 本章小结......................................................................................................... 87
第五章 结论与展望.................................................................................................... 89
5.1 结论................................................................................................................. 89
5.2 展望................................................................................................................. 91
附 录............................................................................................................................ 93
参考文献...................................................................................................................... 97
在读期间公开发表的论文和承担科研项目及取得成果........................................ 100
致 谢.......................................................................................................................... 101
相关推荐
作者:侯斌
分类:高等教育资料
价格:15积分
属性:105 页
大小:7.08MB
格式:PDF
时间:2025-01-09