平板型太阳能与建筑一体化墙体动态热分析模型研究
VIP免费
摘 要
太阳能与建筑一体化是将太阳能利用设施与建筑有机结合,太阳能装置成为
建筑围护结构的一部分,这样既充分的利用了太阳能资源,又有效的减少了建筑
的能耗。太阳能与建筑一体化以后,太阳能集热部件的工作环境与建筑围护结构
传热的边界条件均发生了显著变化,由于建筑围护结构的热容量通常很大,只有
采用集成动态的热分析模型才能正确的反映出一体化墙体整体的热特性。本文主
要目的是建立平板型太阳能与建筑一体化墙体(以下简称一体化墙体)动态热分
析模型,并对一体化墙体的热特性进行初步的研究。具体研究内容及结果如下:
(1)采用 FLUENT 软件对一体化墙体进行数值模拟,并搭建一体化墙体的测
试实验台,进行实验测试,对数值模拟结果进行验证。结果显示:FLUENT 数值
模型能够很好的反映一体化墙体的热性能,但模拟所消耗的时间较长,不适于进
行长周期(全年或者几个月)的模拟分析。
(2)建立了一体化墙体的复合动态热分析模型,采用“二维稳态+一维动态”
分析方法,以集热器的吸热板为分界面,吸热板的背部(与室内环境换热)采用
一维动态传热模型(反应系数法),而吸热板的前面(与大气环境进行换热)采用
二维稳态模型,以分界面的平均温度和热流为二者的边界条件和联系纽带进行求
解。该模型能够较为准确的反映出一体化墙体的热特性,但需要对分界面的温度
进行试算,且初始值的设定对计算稳定的时间具有很大的影响。
(3)采用状态空间法对一体化墙体进行建模分析:首先,将集热器的玻璃盖
板、吸热板和集热流体简化成3个温度均匀的空间节点;其次,将集热器背部保温
层和多层墙体组成的建筑结构划分为𝑛层,每层对应一个节点;最后,对每个节点
建立热平衡方程,进行积分求解。与FLUENT模拟结果对比,表明状态空间模型能
够准确的描述一体化墙体的动态热过程,且耗时大幅降低,可以用于长周期的模
拟计算。
(4)采用状态空间模型以及求解程序对一体化墙体在典型工况下的集热特性
和建筑传热特性进行研究。结果显示:1)一体化以后,集热器的热性能变化不大。
夏季一体化墙体中集热器的日总有效得热量略小于单独集热器,冬季略大于单独
集热器。2)一体化以后,建筑传热性能产生了巨大的变化。在晴天运行工况时,
一体化墙体相对于单独墙体,其传热量变化幅度较小,延迟时间较长。在夏季,
一体化墙体的日总得热量小于单独墙体;在过渡季节,一体化墙体的日总热损失
稍小于单独墙体;在冬季,一体化墙体的日总热损失远远小于单独墙体。3)夏季
辐照不足(集热器不运行)时,一体化墙体隔热性能相对于单独墙体有所提升,
但提升幅度较小。与典型夏季运行工况相比,辐照不足时一体化墙体的日总得热
量有小幅增加,热流波变化幅度增大将近一倍;4)冬季辐照不足(集热器不运行)
时,一体化墙体相对于单独墙体热损失显著减少,但与典型冬季运行工况相比,
其日总热损失增加 40%左右。5)对热惰性小的建筑材料与太阳能一体化以后,其
传热延迟和消减特性改变较为明显;而对热惰性大的建筑材料进行一体化,其传
热延迟和消减特性改变不明显。采用不同的建筑材料进行一体化,对集热特性变
化不大。
关键词:太阳能 建筑一体化 复合动态热分析模型 状态空间模型
热特性
ABSTRACT
The main purpose of this paper is to establish a dynamic thermal analysis model of
flat plate type solar walls, and study the thermal characteristics of the integrated solar
walls. First, conduct experimental testing and FLUENT numerical simulation to
analyze the thermal performance of the solar walls. Second, establish combined
dynamic thermal analysis model and state space model for the solar walls, and to
validate and improve the thermal analysis model. Finally, study the thermal
performance of the solar walls with the thermal analysis model. The specific research
work and results are as follows:
(1) The FLUENT software is adopted to simulate the behaviors of flat plate type
solar walls. Experimental testing and measurements were conducted for the solar walls,
and the simulation results were compared with the testing results. The results indicate
that the FLUENT numerical model can reflect the thermal performances of the solar
walls, however, the accuracy of the numerical model of the FLUENT is greatly
depended on the meshing quality and the influence of various factors such as computer
processing ability, and the FLUENT simulation takes long time and is not suitable for
simulation of long term performance .
(2) Establish a combined dynamic thermal analysis model for flat plate type solar
walls with the “two-dimensional steady model+ one-dimensional dynamic model”
method. The absorber plate of the collector is considered as interface, the back of the
absorber plate (which transfers heat with the indoor environment) employs a
one-dimensional dynamic heat transfer model ( which uses the response coefficient
method), the exterior surface of the absorber plate (which exchanges heat with the
atmosphere) employs a two-dimensional steady-state model. Links the two models by
the average temperature and heat flux of the interface which is taken as boundary
conditions of both sides. The model can accurately reflect the thermal performance of
the solar walls, but this method needs to iterate the temperature of the interface, and the
setting of the initial value has a great influence on the calculation time.
(3) Establish a state space analysis model of flat plate type solar walls. First,
collector's glass cover, the absorber plate and the collector fluid is simplified into 3
temperature node. Second, the collector back insulation layer and multilayer wall is
divided into n layers which corresponds to nodes. Finally, establish and solve heat
balance equation for each node. The state space method can quickly and accurately
simulate the performance of the solar walls and can be used for simulating long term
performance.
(4) Use the state space analysis model to simulate the solar collection performance
and heat transfer performance of building in the typical working conditions. The results
are as follows: 1) After the integration, the thermal performance of the collector
changed a little. In summer, daily total useful energy gain of the solar walls is slightly
smaller than a single collector; in winter, it is slightly larger than a single collector. 2)
After the integration, the heat transfer performance of building changes greatly. When
the collector is running, the amplitude of the heat flow acorss the solar walls is
relatively smooth than a single wall,and its delay time is longer. In summer, daily total
heat gain of the solar walls is less than a single wall; in winter, daily total heat loss of
the solar walls is much less than a single wall. 3) Results in summer under the
conditions of insufficient irradiation (collector does not run) showed that: the heat gains
cross the solar walls is smller than a single wall, but the differnce is small; 4) Results in
winter under the conditions of insufficient irradiation (collector does not run) showed
that the heat loss across the solar walls is still obviously lower than to a single wall. 5)
After the integration, the characteristic of heat transfer across walls of the building
material which has a small thermal inertia changes more obviously than the building
material which has a big thermal inertia. Using different materials in solar walls, their
performance of solar collection changed little.
Key Words: Solar wall, Building integration, combined dynamic
thermal analysis model, state space model, thermal
characteristics
目 录
中文摘要
ABSTRACT
绪论 .................................................................................................................... 1 第一章
1.1 课题的研究背景与意义........................................................................................ 1
1.2 太阳能建筑............................................................................................................ 2
1.2.1 被动式太阳能建筑 ....................................................................................... 2
1.2.2 主动式太阳能建筑 ....................................................................................... 3
1.2.3 零能建筑 ....................................................................................................... 4
1.3 太阳能与建筑一体化国内外研究现状................................................................ 4
1.3.1 国内外研究现状 ........................................................................................... 4
1.3.2 本课题的提出 ............................................................................................... 6
1.4 状态空间法研究现状............................................................................................ 7
1.5 本文主要研究内容................................................................................................ 7
FLUENT 模拟与实验验证 .............................................................................. 10 第二章
2.1 研究对象.............................................................................................................. 10
2.2 FLUENT 模拟 .......................................................................................................11
2.2.1 FLUENT 软件概述 ................................................................................... 12
2.2.2 FLUENT 求解技巧 .................................................................................... 13
2.2.3 一体化墙体 FLUENT 模型建立 ............................................................... 15
2.3 一体化墙体实验平台.......................................................................................... 16
2.3.1 一体化墙体实验装置的搭建 ..................................................................... 16
2.3.2 实验方法及测量参数 ................................................................................. 17
2.4 FLUENT 模拟与实验测试结果对比 .................................................................. 18
2.5 本章小结.............................................................................................................. 21
平板型太阳能与建筑一体化墙体复合动态模型及求解 .............................. 23 第三章
3.1 围护结构传热模型.............................................................................................. 23
3.2 平板型太阳能集热器的动态传热模型.............................................................. 24
3.2.1 集热器不运行时热性能分析模型 ............................................................. 24
3.2.2 集热器动态运行时热性能分析模型 ......................................................... 26
3.3 复合动态模型求解.............................................................................................. 27
3.4 各部件换热系数的计算方法.............................................................................. 29
3.5 一体化墙体复合动态模型验证.......................................................................... 30
3.6 计算时间对比...................................................................................................... 33
3.7 本章小结.............................................................................................................. 34
平板型太阳能与建筑一体化墙体状态空间模型及求解 .............................. 35 第四章
4.1 状态空间模型...................................................................................................... 35
4.2 一体化墙体的状态空间模型.............................................................................. 36
4.2.1 一体化墙体的空间离散 ............................................................................. 36
4.2.2 一体化墙体状态方程 ................................................................................. 38
4.3 状态空间模型求解.............................................................................................. 41
4.4 一体化墙体状态空间模型验证.......................................................................... 42
4.5 计算时间对比...................................................................................................... 45
4.6 本章小结.............................................................................................................. 46
一体化墙体热特性分析 .................................................................................. 47 第五章
5.1 计算分析的基本条件.......................................................................................... 47
5.2 晴天运行工况下一体化墙体热特性分析.......................................................... 47
5.2.1 夏季运行工况一体化墙体热特性分析 ..................................................... 47
5.2.2 过渡季节运行工况一体化墙体热特性分析 ............................................. 51
5.2.3 冬季运行工况一体化墙体热特性分析 ..................................................... 55
5.3 辐照不足停运工况下的建筑传热...................................................................... 58
5.3.1 夏季辐照不足时建筑传热特性 ................................................................. 58
5.3.2 冬季辐照不足时建筑传热特性 ................................................................. 61
5.4 一体化墙体热特性的参数研究.......................................................................... 63
5.4.1 流体入口温度的影响 ................................................................................. 64
5.4.2 建筑材料特性的影响 ................................................................................. 66
5.5 本章小结.............................................................................................................. 69
结论与展望 ...................................................................................................... 70 第六章
6.1 结论...................................................................................................................... 70
6.2 展望...................................................................................................................... 71
参考文献 ........................................................................................................................ 73
在读期间发表的论文和承担的科研项目及取得成果 ................................................ 77
致 谢 ............................................................................................................................ 78
相关推荐
作者:侯斌
分类:高等教育资料
价格:15积分
属性:82 页
大小:3.48MB
格式:PDF
时间:2025-01-09