高负荷轴流风扇设计与气动性能分析
VIP免费
摘 要
随着发电机的单机容量不断增大,空冷汽轮发电机需要冷却风扇提供更大流
量,更高压力的空气进行通风冷却。由于受发电机工作转速的限制,冷却风扇需
要增加级数以满足冷却风压的要求,导致主轴长度增加,对轴系稳定性产生不利
影响。本文以某型多级轴流风扇作为研究对象,在风扇外形尺寸及整体性能不变
的约束条件下,提高风扇单级压升,将四级风扇改型设计成三级,探讨高负荷风
扇的设计方法以及提高其气动性能的途径。本文主要工作如下:
1、设计直动叶替代原型扭动叶,使用 Fine/Turbo 软件,比较原型扭动叶级和
新直动叶级的气动性能。结果表明以直叶片代替扭叶片,该轴流风扇的流量、压
升保持不变,满足设计要求。
2、高负荷风扇动叶和静叶的气动设计。以直动叶级 50%叶高的速度三角形
为准,通过计算得到提高压升后的新速度三角形。采用加弯中弧线的方法,叠加
NACA65-010 叶型厚度,生成加载叶型。对加载叶型级进行数值分析,结果表明,
在设计工况下,加载叶型级静压升比原型直动叶级提高了 19%,效率下降了 0.3%。
3、采用叶片三维弯曲造型方法,对转子叶片进行局部正弯处理,控制叶片径
向压力分布,改善加载叶型级的流动情况,进一步提高叶片气动性能。结果表明,
动叶根部正弯能够有效控制和改善叶片根部吸力面附面层的发展,抑制低能流体
在吸力面的局部分离。设计工况下,加载正弯动叶单级效率较原型直动叶级提高
了1.14%,静压升提高了 33%,达到了设计目标。
4、对正弯加载级组成的三级轴流风扇进行数值模拟,结果显示正弯加载三级
风扇在效率没有下降的情况下,静压升为四级风扇的 78.6%,最佳工况点向大流
量方向偏移。
本文工作结果表明,采用加弯单圆弧中弧线,结合叶片三维弯曲造型方法,
提升单级风扇负荷是成功的,但是对于具有重复级环境的多级轴流风扇,由于级
间参数匹配的影响,后续级的工作性能达不到单级风扇的性能,级组综合性能有
所下降。
关键词:轴流风扇 级负荷提升 大弯角 弯曲叶片
ABSTRACT
Air cooling plays an important role in large power generators to remove the
inside heating from electric-magnetic stator. The unit capacity of power generator is
increased and the rotating speed is limited, cooling air has to be supplied with
multi-stage axial flow fan which can provide more mass flow and higher
pressure-rising capacity. Consequently, the length of main shaft is increased, which
affects shaft stiffness and vibration characteristics. As the research objective, a
multi-stage axial flow fan is redesigned in this paper. It is required to increase the
pressure rise of single stage to reduce the stage number. Keeping the size of fan and
overall performance same, four-stage fan is redesigned into three stages. The main
work of this paper is as follows:
Firstly, the new straight rotor is designed instead of the original twisted rotor.
The new single-stage fan and the original one are simulated with the software
Fine/Turbo for comparing their aerodynamic performance. The results show that the
mass flow and pressure rise remain the same, which meet the design requirement,
when the straight blades replace the twisted blades.
Secondly, the highly loaded blade airfoil is designed. The speed triangle at mid
span is redesigned. The camber line of the highly loaded profile is arc and the
camber is increased. Highly loaded airfoil is constructed by imposing the thickness
distribution of NACA65-010 series upon the designated camber line. The analysis of
single-stage aerodynamic performance indicates that the static pressure rise from
highly loaded fan increases by 19 percent with the efficiency decreases by 0.3
percent in value at the design operation.
Thirdly, the bowed blade to control radial pressure gradient is applied to
alleviate the radial flow and improve the aerodynamic performance of the highly
loaded fan. The results show that the bowed rotor effectively controls the
development of boundary layer and suppress the low momentum fluids flow
separation in the hub region. At the design operation, the pressure rise has increased
by 33 percent and the efficiency also increases by 1.14 percent in the highly loaded
fan of bowed rotor.
Finally, the four-stage axial flow fan and the three-stage axial flow fan with
highly loaded bowed rotor are simulated. The results show that the pressure rise of
three-stage achieves 78.6 percent pressure rise of the four-stage fan with little loss of
efficiency. Optimal operating point is changed towards large flow rates.
The work of this paper shows that it is successful to increase the pressure rise of
a single-stage axial flow fan with a high cambered and bowed blade. However, due
to the interstage mis-matching, the performance of subsequent stage does not meet
the single-stage fan standard and the integrative performance of the multi-stage axial
flow fan is declined.
Key Word:Axial flow fan, Stage pressure rise increasing,
Large curved angle, Bowed blade
目 录
中文摘要
ABSTRACT
第一章 绪 论 .................................................................................................................. 1
1.1 课题的来源及意义 ............................................................................................ 1
1.2 国内外研究现状 ................................................................................................ 2
1.2.1 风扇/压气机叶栅内损失机理 ................................................................ 2
1.2.2 大折转角高负荷叶型研究进展 ............................................................. 4
1.2.3 弯曲叶片的研究进展 ............................................................................. 6
1.3 本论文的主要工作 ............................................................................................ 8
第二章 叶栅流动的数值方法 ...................................................................................... 10
2.1 流动基本方程 .................................................................................................. 10
2.2 网格结构及其无关性 ...................................................................................... 12
2.3 多重网格技术 .................................................................................................. 15
2.4 边界条件与初始条件 ...................................................................................... 16
2.5 收敛标准 .......................................................................................................... 16
第三章 单级轴流风扇流动的数值模拟 ...................................................................... 17
3.1 物理模型 .......................................................................................................... 17
3.2 数值计算 .......................................................................................................... 19
3.3 计算结果分析与比较 ...................................................................................... 19
3.3.1 总体性能分析 ....................................................................................... 19
3.3.2 叶片间流动分析 ................................................................................... 20
3.3.3 周向平均参数沿叶高的分布 ............................................................... 22
3.3.4 风扇内三维流动 ................................................................................... 24
3.4 重复级流动分析 .............................................................................................. 24
3.4.1 四级风扇计算模型 ............................................................................... 25
3.4.2 计算结果 ............................................................................................... 25
3.4 本章小结 .......................................................................................................... 27
第四章 高负荷单级风扇的气动设计 .......................................................................... 28
4.1 基元级的增压原理 .......................................................................................... 28
4.2 加载叶型设计 .................................................................................................. 29
4.2.1 加载动叶的理论速度三角形 ............................................................... 29
4.2.2 平面叶栅实验结果的设计应用 ........................................................... 30
4.2.3 扩压因子 ............................................................................................... 34
4.2.4 加载叶型成型 ....................................................................................... 34
4.3 高负荷风扇气动性能的数值分析 .................................................................. 37
4.4 正弯动叶设计 .................................................................................................. 43
4.5 正弯动叶单级流动的数值分析 ...................................................................... 45
4.5.1 总体性能比较 ....................................................................................... 45
4.5.2 叶片间流动分析 ................................................................................... 46
4.5.3 周向平均参数沿叶高的分析 ............................................................... 49
4.6 多级轴流风扇气动性能数值分析 .................................................................. 51
4.6.1 总体性能比较 ....................................................................................... 51
4.6.2 叶片间流动分析 ................................................................................... 52
4.6.3 周向平均参数沿叶高分布 ................................................................... 54
4.7 本章小结 .......................................................................................................... 57
第五章 结论与展望 ...................................................................................................... 58
5.1 结论 .................................................................................................................. 58
5.2 展望 .................................................................................................................. 58
符号表 ............................................................................................................................ 60
参考文献 ........................................................................................................................ 61
在读期间公开发表的论文和承担科研项目及取得成果 ............................................ 65
致谢 ................................................................................................................................ 66
第一章 绪论
1
第一章 绪 论
1.1课题的来源及意义
随着科技的发展和人们生活水平的日益提高,工业和民用对电力的需求也在
逐渐增大,促进了我国电力工业的迅猛发展。从我国能源结构和现有技术特点来
看,在未来较长一段时间内火力发电在我国电力工业中仍将占据着绝对主导地位。
为了经济、有效的承担繁重的供能任务,大容量高效清洁的超临界汽轮机发电机
组逐渐成为燃煤发电主力。国内各大型电厂纷纷开始装配 600MW 和1000MW 级
火电机组,于 09 年6月30 日广东省投入运营的华能海门电厂 1号单机容量
1036MW,是目前国内单机容量最大的机组。大容量发电机组的效率比小容量发
电机组的效率高,在电网内发展大容量发电机组,其建设速度和经济效益均比发
展小容量发电机组优越,因此发展更大容量的发电机组成为了电力行业的必然趋
势。
提高汽轮发电机单机容量的主要措施有两种:一种是增加电机尺寸,另一种
是提高电磁负荷。在实际应用中,由于会受到定子运输尺寸、转子锻件和转子挠
度等因素限制, 提高汽轮发电机单机容量的主要措施是增加电磁负荷。提高电磁
负荷必然引起电磁损耗增加,进而导致电机发热量的增多,使电机面临严峻的冷
却问题。因此必须采用更有效的冷却技术来控制汽轮发电机的散热,提高汽轮发
电机的散热强度,使发电机各部分的温升保持在允许范围内,保证汽轮发电机能
够安全可靠的运行。
汽轮发电机的冷却方式主要有空气冷却、氢气冷却、液体冷却和蒸发冷却四
种。空气冷却由于具有结构最简单、费用最低廉、使用最安全、维护最方便等优
点,因而得到了广泛的应用,在水轮发电机、汽轮发电机和交直流电动机的冷却
系统中均长期占据着相当大的优势。近年来随着通风传热研究和冷却结构的精细
优化,空冷方式能适应的单机容量也在不断提高。
大功率发电机需要大流量,高压力的冷却空气,同时考虑到整体结构的设计
要求,因此,多级轴流风扇是作为冷却风扇的最佳选择。百万千瓦级火电机组选
用四级轴流风扇进行空冷,百万千瓦级核电半转速机组选用的冷却风扇级数多达
八级。这种大尺寸多级轴流风扇一般是由几个相同的单级轴流风扇叶轮串联而
成。由于冷却风扇是直接装在发电机主轴上的,多级轴流风扇的轴向总长度直接
相关推荐
作者:赵德峰
分类:高等教育资料
价格:15积分
属性:69 页
大小:4.7MB
格式:PDF
时间:2025-01-09