环形紫外消毒反应器微生物灭活的 CFD模拟

VIP免费
3.0 牛悦 2025-01-09 4 4 4.82MB 69 页 15积分
侵权投诉
摘 要
随着社会经济的蓬勃发展,伴随而来的环境污染已然成为一个不可回避的问
,以牺牲环境换来的经济繁荣已经让人们付出了深刻的代价,因此如何治理好已
产生的环境污染成为了大家所关心的焦点。以水污染处理为例,作为出水前的最
后一道工序,水体消毒成为了影响供水安全与否的关键所在。与传统化学消毒方
式相比,紫外消毒不产生有害的副产物,且对细菌、病原菌以及原生动物等都具
有较好的杀灭效果 。 本文主要运用 CFD 技术 , 针对紫外消毒系统的消毒过程分别
进行流场模拟和辐射强度模拟以及最终的辐射剂量和微生物浓度场的模拟等。
在本文的流场水力特性的模拟过程中,运用了标k- ε 模型、 Realizable k- ε
RSM 模型以及低雷诺 k- ε 模型等湍流模型对特定紫外消毒器内部的流场情况进
行了模拟 , 并将模拟的结果与
PIV
实验结果对比 , 在
x=0
平面上分别选取
z=1cm
z=15cm z=64cm z=83cm 等位置对 z向流速进行模拟,结果表明,标准 k- ε 模型
Realizable k- ε PIV k- ε 型 和
RSM
模型的模拟结果较为理想。
在辐射强度的模拟过程中,运用 DO 射模型对特定的紫外消毒器内的辐射
强度分布情况进行了模拟 , 并将模拟的结果与文献中的模拟结果做对比 , 发现
D O
辐射模型在紫外消毒器辐射强度的研究中能够很好的捕捉光强分布特性,可作为
研究紫外消毒的可靠辐射模型。
本文还针对紫外消毒器内的挡板设置问题展开了探究,经研究发现,挡板的
存在会改变流场流态,且挡板的相对尺寸以及相对位置的不同会对流场、水流的
平均停留时间以及最终出口处粒子接收的平均紫外剂量产生不可忽略的影响。
本文还对紫外消毒器消毒过程的微生物浓度分布进行了模拟,根据微生物对
紫外线敏感程度的不同,分别模拟了
3
种微生物(大肠杆菌、杯状病毒以及
MS 2
噬菌体)的灭活情况,模拟结果显示:将上述三种微生物处于同样紫外透射率的
水体环境下接受同样的紫外光照射 , 大肠杆菌的灭活效果最好且远远大于杯状病
, 而
MS2
噬菌体的灭活效果最差 。 文章最后也指出 , 若要增强如
MS2
噬菌体等
对紫外光不敏感的微生物的消毒效率,可通过增强辐射、增大水体的紫外透射率
或者改善消毒系统的构型设计等方式来实现。
关键词:紫外消毒 CFD
CFD
CFD
CFD 湍流模型 辐射强度 辐射剂量 浓度
分布
ABSTRACT
ABSTRACT
ABSTRACT
ABSTRACT
Environment-related problem has become impossibly evasive with the
development of our society.
We
have and still have to pay a lot more if we still attempt
to continue achieving economic prosperity on the foundation of eco - system atic sacrifice.
So how to deal with the pollution caused is becoming the hotspot that people care about.
Tak ing wastewater treatment as an example, the whole process contains several
procedures, and the treated water must be fully disinfected before running out of the
disposal facilities in order to guarantee the safety and quality of the water. Compared
with the traditional chlorine disinfection, the ultraviolet disinfection produces almost no
by-products, moreover, the ultraviolet can disinfect almost all bacterium, pathogens and
protozoan cysts with different UV dosage. In this thesis , by utilizing CFD technique, the
flow field and radiation intensity distribution and subsequent UV dosage that received
by every single particle in the water flow have been well simulated according to the
disinfection process in the UV system.
In order to predict the flow field characteristics of UV disinfection reactor, and to
enhance the accuracy of the modeling results, CFD simulation method is u se d to find a
proper turbulence model to describe the hydrodynamic features. Standard k- ε model,
Realizable k- ε model, low-re k- ε model and RSM model are applied and compared to
PIV experiment data, at x=0,z=1cm and x=0,z=83cm,all of the four mentioned
turbulence model s above show a general agreement on the whole. While at x=0,
z=15cm and x=0,z=64cm,Realizable k- ε model and Standard k- ε model are not
consistent with PIV result as expected. So from the above, low-re k- ε model and RSM
model are more accurate and have an ideal effect in hydrodynamic modeling.
Radiation intensity simulation plays a very important part in the whole research.
DO radiation model is utilized here to compare with other two radiation models l inear
source model and cylindrical source model. The simulation result that got from DO
radiation model turn s out to be more precise than linear source model in capturing the
features about radiation intensity distribution. Therefore, except for cylindrical source
model, DO radiation model can also be used as a reliable and appropriate model in such
relevant research es.
The thesis discusse s baffle-related problems in UV disinfection systems. By
comparing the hydrodynamic features and disinfection efficiency regarding to each of
the 3 sets of different configured reactors, finally it c o me s to a conclusion that the
setting of baffles can change the state of flow and somehow slow down part of the flow
velocity , thus suspending its residence time. And baffle
s relative size and relative
locations can also influence the disinfection effect . So when doing similar researches ,
it
s necessary to take all of the influencing factors into consideration .
The thesis also discusse s the inactivation efficiency b y using a UDF injection
which is applied in simulating the distribution of microorganism concentration during
the disinfection process . And it shows that inactivation efficiency is closely related to
the UV sensitivity of the microorganism. The microorganism with higher UV sensitivity
can be easily inactivated, such as coli. Comparing with coli, calicivirus has lower UV
sensitivity, therefore it
s a bit more difficult to be killed by UV rays. But when
compar ing the se two microorganisms above to MS2 bacteriophage, the latter one is the
least sensitive to UV irradiation . So in order to enhance the inactivation rate of UV-
insensitive microorganisms like MS2 bacteriophage, we can increase the radiation
intensity or UV transmittanc e relatively, otherwise, improve the configuration of the
disinfection reactor.
Key
Key
Key
Key W
W
W
W ord:
ord:
ord:
ord: UV
UV
UV
UV disinfection
disinfection
disinfection
disinfection ,
,
,
, CFD
CFD
CFD
CFD ,
,
,
,
T
T
T
T
urbulence
urbulence
urbulence
urbulence model
model
model
model ,
,
,
, R
R
R
R adiation
adiation
adiation
adiation
intensity
intensity
intensity
intensity ,
,
,
, UV
UV
UV
UV dosage
dosage
dosage
dosage ,
,
,
, C
C
C
C oncentration
oncentration
oncentration
oncentration distribution
distribution
distribution
distribution
目录
中文摘要
ABSTRACT
ABSTRACT
ABSTRACT
ABSTRACT
第一章 绪论
.....................................................................................................................
1
1.1 全球水资源状况
........................................................................................................
1
1.2 水处理消毒技术
........................................................................................................
1
1.3 影响紫外消毒系统灭活效果的因素
.......................................................................
3
1.3.1 水质状况
.........................................................................................................
3
1.3.2 紫外剂量
.........................................................................................................
5
1.3.3 微生物自身修复
.............................................................................................
6
1.4 紫外消毒的研究现状
................................................................................................
6
1.4.1 试验验证
........................................................................................................
7
1.4.2 CFD 数值模拟
.................................................................................................
8
1.5 本文研究内容
............................................................................................................
9
第二章 紫外消毒反应器水力特性模拟
.......................................................................
10
2.1 基本控制方程
..........................................................................................................
10
2.2 湍流模型
.................................................................................................................
10
2.3 流场模拟
..................................................................................................................
12
2.3.1 研究对象
.......................................................................................................
12
2.3.2 计算细节
.......................................................................................................
13
2.3.3 结果和讨论
...................................................................................................
13
2.4 本章小结
.................................................................................................................
16
第三章 紫外消毒器辐射强度模拟
...............................................................................
17
3.1 研究对象
..................................................................................................................
17
3.2 辐射模型
..................................................................................................................
17
3.2.1 线源模型
......................................................................................................
17
3.2.2 柱源模型
......................................................................................................
18
3.2.3 DO 模型
.........................................................................................................
18
3.3 模拟结果分析
.........................................................................................................
22
3.3.1 模型比较
.......................................................................................................
22
3.3.2 预测不同 UVT 对光强分布的影响
...............................................................
24
3.4 本章小结
..................................................................................................................
25
第四章 挡板设置对 UV 反应器水力特性和辐射剂量的影响探究
.............................
27
4.1 研究一
.....................................................................................................................
27
4.1.1 几何结构
.......................................................................................................
27
4.1.2 流场模拟
.......................................................................................................
29
4.1.3 辐射强度模拟
..............................................................................................
35
4.1.4 辐射剂量模拟
..............................................................................................
35
4.2 研究二
......................................................................................................................
41
4.3 研究三
......................................................................................................................
48
4.4 本章小结
.................................................................................................................
51
第五章 微生物的浓度场模拟
.......................................................................................
53
5.1 Chick-Watson 模型
................................................................................................
53
5.2 微生物浓度场模拟控制方程
.................................................................................
53
5.3 微生物浓度场模拟
.................................................................................................
53
5.4 本章小结
.................................................................................................................
57
第六章 结论与展望
.......................................................................................................
58
6.1 结论
..........................................................................................................................
58
6.2 展望
.........................................................................................................................
59
参考文献
.........................................................................................................................
60
在读期间公开发表的论文和承担科研项目及取得成果
.............................................
65
致 谢
.............................................................................................................................
66
第一章 绪论
1
第一章
第一章
第一章
第一章 绪论
绪论
绪论
绪论
1.1 全球水资源状况
地球的储水量是很丰富的,整个地表有近 71% 面积被水所覆盖,但是其 中
97.5%
的水来自于广阔的海洋 , 而这部分水由于盐分过高既不能饮用 , 也不能灌溉
也同样难以应用于工业领域。淡水资源仅仅只占地球总水量的
2.5%
,而其中大部
分淡水固定在南极和格陵兰的冰层中 , 还有部分为深层地下水和土壤保有的水分
也不能被人类利用 , 因此可供直接利用的淡水资源仅仅只占全球淡水的 1% , 约为
全球水体总量的
0.007%
。由此看来,当前水资源的首要问题就是水量严重匮乏。
除了水量的不足以外,水资源在全球范围内分布严重不均匀这一现实同样是
对人类社会生产、生活以及发展的又一个严峻的挑战。据有关资料显示,全世界
范围内 , 有
80
个国家和地区约
15
亿人口面临着淡水不足的问题 , 其中有近
26
国家约 3亿人极度缺水 , 该资料同样预测到 2025 年左右 , 全球的缺水人口或将翻
番达到
30
亿之多 。 因此伴随着清洁水源的匮乏 , 地区间将会出现越来越多的为争
夺水资源的控制权和使用权而造成的紧张局势,甚至将有可能出现由争夺水资源
而引发的地区间的冲突和战争。
就我国的情况而言,我国是一个干旱缺水严重的国家。由于地域面积广阔,
人口基数庞大,因此也面临着水资源分布不均和人均水量不足的危机。根据有关
资料显示 , 我国人均淡水资源仅为世界平均水平的 1/4 、 在世界名列 110 , 是全
球范围内人均水资源最贫乏的国家之一。 20 纪末,全国 600 多座城市中40 0
多个城市存在供水不足问题,其中比较严重的缺水城市
110
个,全国城市缺水
总量达到 60 亿立方米。
正如大家所意识到的, 21 世纪我们将面临前所未有的困境和难题,而很多难
题已开始露出端倪,有专家学者认为,水资源危机是本世纪继石油危机之后的又
一危机,作为环境生态的重要组成部分,在水资源严重匮乏和不平衡的今天,水
环境的质量问题不容忽视。然而,让我们不得不正视的是,除了上述导致水资源
危机的客观因素之外,从上个世纪以来,随着工业化的深入,伴之出现的环境污
染也日益严重,人为的水污染已经成为影响到人类生存和发展的又一大威胁,因
此如何缓解和防治水体污染,如何对污废水进行有效的处理成为应对水资源危机
的关键所在。
1.2 水处理消毒技术
环形紫外消毒反应器微生物灭活的 CFD模拟.pdf

共69页,预览7页

还剩页未读, 继续阅读

作者:牛悦 分类:高等教育资料 价格:15积分 属性:69 页 大小:4.82MB 格式:PDF 时间:2025-01-09

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 69
客服
关注