方形吸顶散流器平送风非等温射流特性研究
VIP免费
I
摘 要
随着社会经济的发展和人民生活质量的提高,人们工作和生活环境的舒适性
要求也不断提高,而空调使用的高能耗性,使得其能源节约越来越受到关注。室
内气流分布和空调系统的效果对舒适性和空调的利用效率有着极为重要的作用。
对既有建筑来说,送风口及其射流特性是影响室内气流分布和空调系统效果的重
要因素。目前,针对单一类型的送风口,其射流规律在相关的手册或参考资料中
报道很少或叙述不够充分。本课题以校企合作的联盟计划研发任务为目标,将以
散流器作为研究对象,根据散流器的送风特点,在等温送风射流特性研究的基础
上,建立散流器非等温送风射流模型,研究其非等温射流特性。
论文首先根据吸顶散流器平送风射流特点和机理,建立了散流器非等温送风
射流模型,得到射流射程理论计算式,以及轴心速度和温度的分布规律,并分别
根据冬夏季送风不同特点进行了理论分析。论文在已有空气分布器等温性能实验
台的基础上,根据相关设计标准和产品样本资料,设计增添了冷热源和空气处理
机组等,搭建了空气分布器非等温性能实验台。所设计的实验台能满足合作企业
生产的大部分风口末端设备的实验要求。本文实验采用了万向风速仪来测量非等
温射流的风速和温度,利用均速管流量计测量系统的风量。
论文主要以方形吸顶散流器为研究对象,对论文所建立的冬季散流器平送风
非等温射流理论模型进行了冬季工况的验证,理论模型与实验结果吻合。实验表
明散流器送风中存在低压涡流区;理论公式计算获得的速度轴心轨迹与实验值基
本一致;由理论值计算获得的冲击点与实验值的最大误差为 0.07m;数学模型计
算射程值与实验值的误差基本在 10%以内。
实验测量了方形吸顶散流器冬季工况的非等温射流包络面。论文对不同规格
散流器的实验所得轴心速度及温度分布进行了无因次曲线拟合,结果表明散流器
射流的轴心速度与温度分布规律存在相似性,也验证了前人对散流器速度衰减系
数与温度衰减系数的研究成果。此外,论文对方形吸顶散流器的射流特性进行了
实验分析,射流的下降距离和扩散宽度均随喉部风速的增大而近似线性增大,散
流器喉部尺寸越大其扩散距离和下降距亦越大。方形吸顶散流器在实验工况内射
流的最大下降距为 0.83m,即气流在顶棚形可成良好的贴附射流。实验证明,散
流器射流扩散包络面上会出现一个凹点,喉部尺寸为 240×240mm 时的凹点出现
在离风口 0.7m~1.5m 处, 420×420mm 凹点则出现在 1.5m~2.0m 处。同时,方形
吸顶散流器的平均阻力系数与风口喉部尺寸呈良好的线性关系。
论文研究成果完善了方形吸顶散流器冬季工况的非等温射流特性研究,为工
程设计人员提供了实验依据,同时为进一步夏季工况的研究提供了理论基础。
关键词:方形吸顶散流器 平送风 非等温 射流特性 射程
III
ABSTRACT
With the development of economy and the improvement of people’s quality of
life, the comfort requirements of people’s working and living environment increase.
But the high energy consumption of air conditioning makes the energy conservation
more and more attention. The indoor air distribution and the effect of the air
conditioning system play a leading role in the comfort and air conditioning efficiency.
For a building, the air supply outlet is an important factor to the indoor air distribution.
But the jet theory for a single type of outlets is not described sufficient in the manual.
This paper will take the ceiling diffuser as the research object, according to
characteristics of the diffuser and isothermal air supply jet characteristic research, on
the basis of scattered flow of non-isothermal air supply jet model, studying the
characteristics of the jet.
The thesis establishes a theoretical model according to jet characteristics of the
ceiling diffuser and mechanism of the non-isothermal air supply jet diffuser, get the jet
range calculation formula, axial velocity and temperature distribution, and respectively
analysis the summer and winter model according to their characteristic. With the
relevant design standards and product samples, paper design and build the cooling &
heat sources and the air handling units in the existing air distribution performance test
bench. The laboratory meets most of air distributors manufactured by the Shanghai
Shinelong Air-Conditioning Co., Ltd. Wind speed testing device consists of universal
anemometer probe and the Agilent data logger.
Paper takes square ceiling diffusers as the research object to verify the theoretical
model of ceiling diffuser. Experiments show that Theoretical model is consistent with
the experimental result. There is a low-pressure vortex area in the air flow of ceiling
diffuser air supply. Theoretical formula to obtain the axial velocity trajectory with the
experimental data can also be a good match. Compared values calculated by the model
with experimental results, the maximum error of impinging point is 0.07m, and the
error of throws is within 10%.
Non-isothermal jet characteristics and envelopes of square ceiling diffusers are
obtained by experiments. Paper fits the axial velocity and temperature distribution
dimensionless curve of the different specifications diffusers. The results show that the
axial velocity and temperature distribution are similar, and also verified the results of
IV
the previous study of axial velocity and temperature attenuation coefficient. The spread
and drop of square ceiling diffuser increase linearly with the increase of the wind speed.
The larger the dimension of a diffuser, the longer its spread and drop are. The
maximum drop of square ceiling diffuser is 0.83m in the experimental conditions, so it
is that the jet forms a good wall attachment jet under the ceiling. Experiments show
that jet diffusion in y direction enveloping surface will appear in a concave point, the
pits appear in the range of x = 0.7 m ~ 1.5 m when throat size is 240 * 240 mm, and
420 x 420 mm pits appear range is x = 1.5 m ~ 2.0 m. The average drag coefficient of
square ceiling diffusers is a good linear relationship with their outlet throat size.
Thesis research results improved square ceiling diffuser’s non-isothermal jet
characteristics research of winter conditions, provide an experimental reference for the
designers, at the same time provides a theoretical basis for the further study of its
summer conditions.
Key Word:Ceiling diffuser, Flat air supply, Non-isothermal, Jet
characteristics, Throws
V
目 录
中文摘要
ABSTRACT
第一章 绪 论 ....................................................... 1
1.1 课题的提出 .................................................... 1
1.2 送风口非等温射流理论研究现状 .................................. 2
1.3 散流器研究现状 ................................................ 4
1.3.1 国内研究现状 .............................................. 4
1.3.2 国外研究现状 .............................................. 6
1.4 本文研究内容 .................................................. 8
第二章 射流原理及方形吸顶散流器平送风非等温射流数学模型建立 ......... 9
2.1 射流基本理论 .................................................. 9
2.1.1 射流的分类 ................................................ 9
2.1.2 非等温射流(浮力射流)的流动特性 ......................... 12
2.1.3 贴附射流 ................................................. 18
2.1.4 布辛涅斯克假定 ........................................... 19
2.2 方形吸顶散流器平送风非等温射流运动机理分析及数学模型建立 ..... 19
2.2.1 吸顶散流器的送风特点 ..................................... 19
2.2.2 吸顶散流器平送风非等温射流运动机理分析 ................... 21
2.2.3 吸顶散流器平送风非等温射流模型假设 ....................... 22
2.2.4 吸顶散流器平送风非等温射流数学模型建立 ................... 23
2.3 小结 ......................................................... 30
第三章 空气分布器非等温送风射流特性实验系统设计 .................... 31
3.1 空气分布器实验室介绍 ......................................... 31
3.1.1 空气分布器实验室送风系统 ................................. 32
3.1.2 空气分布器实验室测试系统 ................................. 33
3.2 空气分布器非等温送风射流特性实验室冷热源系统的设计 ........... 35
3.2.1 冷热源容量计算及设备选型 ................................. 35
3.2.2 空气处理机组的设计 ....................................... 39
3.2.3 冷热源系统 ............................................... 46
3.3 小结 ......................................................... 47
第四章 方形吸顶散流器平送风非等温射流理论模型验证及射流特性研究 .... 49
4.1 实验方案设计 ................................................. 49
VI
4.1.1 实验对象和目的 ........................................... 49
4.1.2 实验内容和工况 ........................................... 50
4.1.3 实验测点布置和实验仪器 ................................... 51
4.2 方形吸顶散流器平送风非等温射流数学模型验证实验 ............... 56
4.2.1 散流器送风参数均匀性和稳定性及室内热环境实验结果与分析 ... 56
4.2.2 方形吸顶散流器平送风非等温射流数学模型验证结果及分析 ..... 60
4.3 方形吸顶散流器平送风非等温射流特性实验及分析 ................. 61
4.3.1 方形吸顶散流器轴心速度和温度特性实验结果及分析 ........... 61
4.3.2 方形吸顶散流器射流边界特性实验结果及分析 ................. 64
4.3.3 方形吸顶散流器动力特性实验结果及分析 ..................... 67
4.4 方形吸顶散流器非等温射流模型应用及特性研究分析 ............... 68
4.5 小结 ......................................................... 70
第五章 结论与展望 .................................................. 72
5.1 结论 ......................................................... 72
5.2 有待继续研究的内容 ........................................... 73
参考文献 ........................................................... 75
在读期间公开发表的论文和承担科研项目及取得成果 ..................... 78
致 谢 ............................................................. 79
相关推荐
-
VIP免费2025-01-09 4
-
VIP免费2025-01-09 4
-
VIP免费2025-01-09 4
-
VIP免费2025-01-09 4
-
VIP免费2025-01-09 4
-
VIP免费2025-01-09 5
-
VIP免费2025-01-09 4
-
VIP免费2025-01-09 4
-
VIP免费2025-01-09 4
-
VIP免费2025-01-09 4
作者:牛悦
分类:高等教育资料
价格:15积分
属性:83 页
大小:3.88MB
格式:PDF
时间:2025-01-09