H62黄铜薄板尺寸效应及微拉深成形性能的研究

VIP免费
3.0 陈辉 2024-11-19 10 4 9.97MB 65 页 15积分
侵权投诉
随着微机电系统(MEMS)和微电子工业的发展,微型产品得到了飞速的发展
和广泛的应用。产品微型化已成为一种趋势,已成为精密仪器、数码产品、医疗器
械以及航空航天等领域的研究热点是人们认识和把握微观世界的高新技术之
MEMS术的发展对微型构件的微成形技术带来挑战,然微细塑性成形技术
不是传统塑性成形工艺的简单等比例缩小,而是一个崭新的研究领域。由于
件尺寸减小所引起的尺寸效应现象亦不容忽视。尺寸效应使得材料的流动应力、
向异性、延展性和材料的成形极限等都发生了变化,同时也影响着金属板材的
形性能。
本文根据微细塑性成形技术特点及发展现状,采用微拉伸试验与数值模拟
术相法,H62铜合的尺工艺进行
究:
1)特征尺寸效应和晶粒尺寸效应,以及尺寸效应与塑性变形、强度和延展性
的关系;尺寸效应现象可归因于厚度和晶粒尺寸的影响,尤其是板厚和晶粒尺
各自对材料力学性能的影响作用,并最终通过关系式表达出来。通过拉伸试验
获得了材料的各力学性能参数,验证了厚度和晶粒尺寸效应的存在及其影响。
a
强度在一定的晶粒尺寸范围内随 成线性变化,且遵守Hall-Petch关系式;b
随着 的减小,相同应变下,流动应力呈下降的趋势c)延伸率随 的减
小而下降,材料的硬化指数随着晶粒尺寸的增大而增大,随着板料厚度的增大
增大;d伸试,结Swift模型理论个流
应力与晶粒度与板厚比值 之间的新的微细板料的弹塑性本构模型。
2
的断口形貌来进一步理解和观察尺寸效应现象。通过观察断口形貌发现,拉伸试
样的断裂方式为韧窝微孔聚合型断裂。板厚为0.5mm1mm的试样断口处韧窝多而
浅且为抛物线形,材料韧性好,塑性强;板厚0.1mm0.2mm的试样断口韧窝深而
大,材料基体强化能力强,硬化指数n值较大,但塑性差
3)以微拉深工艺为例,研究了H62的成形性能,探讨了尺寸效应现象对微拉
深工艺的影响。以微拉伸试验的参数为依据,以微拉深成形为例,建立有限元模
型,对成形过程进行有限元模拟,研究板料厚度、晶粒度对材料成形性能的影响。
关键词:尺寸效应 断口形貌 屈服强度 硬化指数 有限元分析
ABSTRACT
Metallic interconnects and circuitry have been experiencing excessive deformation
beyond their elastic limits in many applications, ranging from micro electromechanical
systems (MEMS) to flexible electronics. These broad applications are creating needs to
understand the extent of strength and ductility of metallic sheet at scales approaching
the micron and sub micron range. In manufacturing of metallic components, the size of
the part plays an important role for the process behavior. This is due to so called size
effects, which lead to changes in the process behavior even if the relationship between
the main geometrical features is kept constant. The aim of this paper is to give a
systematic review on such effects and their potential use or remedy. First, the typology
of size effects will be explained followed by a description of size effects on strength and
harden exponent. The last sections describe size effects on formability and forming
processes
Based on plastic micro-forming technology characteristics and development,
combining micro tensile test and numerical simulation technology with the H62 brass
alloy material to study size effects: 1) feature size effect and grain size effect, and size
effects and plastic deformation, strength and ductility relations; 2) the effects of grain
sizes and thicknesses, especially respective effects of thickness and grain size about
material mechanical properties, and ultimately express this relationship by constitutive
equation; 3) deformation mechanism of tensile specimens because of size effects on the
H62 material in micro scale by observing the specimen fracture appearance to further
understand and observe size effect phenomena, especially the influence of material
strength such as dislocation defects; 4) study H62 brass forming performance during
plastic forming process, micro deep drawing technology as an example, to discuss the
influence on micro deep drawing technology of size effects.
In order to investigate the effect of grain size and thicknesses to material
mechanical properties in the micro-scale, experiments are achieved by tensile test on
H62 brass sheet metal with different grain sizes and thicknesses, then, a parameter
(the ratio of sheet thickness to material grain size) is introduced to characterize
size effects. The conclusions of experiments are as follows: 1) the non-uniformity of
grain distribution increases as grain size increasing, and the yield strength is linear with
2
within some grain size scales, the relationship between yield strength and is
still in agreement with Hall-petch expression; 2) the flow stress and elongation decrease
as decreasing; 3)The hardening exponent of sheet metal increases with increasing of
sheet thickness and increases as grain size increases. By the fracture appearance
observation, all specimens show dimple fracture, the dimples of 0.5mm and 1mm sheets
are many and shallow, the shape is parabolic which shows its good toughness and
plasticity; The dimples of 0.1mm and 0.2mm sheets are big and deep, the hardening
exponents are bigger but the elongations are lower. In order to study the formability of
H62, taking the micro deep drawing technology as an example, a finite element model
for forming process is established to discuss the influence of size effects phenomenon to
micro deep drawing technology and forming performance. Through the finite element
simulation, we study the effects of sheet thickness and grain size on material forming
performance influence.
Key WordSize Effect, Fracture Appearance, Hardening Exponent,
Finite-element Analysis
目录
摘要
ABSTRACT
..................................................................................................................1
§1.1 课题意义................................................................................................1
§1.2 微细成形技术的研究现状综述........................................................................2
§1.3 微细成形技术的尺寸效应................................................................................6
§1.3.1 国外尺寸效应的研究现状......................................................................7
§1.3.2 内尺寸效应的研究现状......................................................................9
§1.4 论文框架............................................................................................................9
§1.4.1 本文研究主要目标..................................................................................9
§1.4.2 本文研究主要内容..................................................................................9
第二章 微拉伸过程尺寸效应的研究.....................................................................11
§2.1 单向微拉伸试验..............................................................................................11
§2.1.1 试验材料选择与试样制备....................................................................11
§2.1.2 试验设备................................................................................................12
§2.1.3 试验方案设计........................................................................................12
§2.1.4 试验结处理、分析与讨论................................................................13
§2.2 断口形貌的电镜扫描试验..............................................................................22
§2.2.1 金属材料断裂机理概述........................................................................22
§2.2.2 断口形貌的电镜扫描试验方............................................................23
§2.3 小结..........................................................................................................27
第三章 基于尺寸效应的微成形力学本构模型的建立.............................................29
§3.1 尺寸效应的分类..............................................................................................29
§3.2 表面层模型......................................................................................................31
§3.3 Swift 模型.........................................................................................................32
§3.4 本构模型的建立..............................................................................................33
§3.5 小结..........................................................................................................36
4 微细塑性成形的有限元模拟..........................................................................37
§4.1 有限元件简..............................................................................................37
§4.1.1 式有限元和式有限元....................................................................37
§4.1.2 体单元与单元概述........................................................................39
§4.2 单向拉伸试验的数值模拟..............................................................................41
§4.2.1 有限元模型建立....................................................................................42
§4.2.2 有限元模拟结果分析............................................................................42
§4.3 微拉深试验的数值模拟..................................................................................44
§4.3.1 有限元模拟模型建立............................................................................45
§4.3.2 有限元模拟结果分析............................................................................46
4
§4.4 小结..........................................................................................................52
第五章 结论与展.....................................................................................................54
§5.1 结论..................................................................................................................54
§5.2 之处及展..............................................................................................55
......................................................................................................................56
第一章 绪 论
§1.1 课题意义
80年代电子(IC)以及
其在现代计算机、行金通、制造系统、航空航天等部门核心
用,使得人们对微型元器件视起来。除此,由于空间、
便/(Micro/Nano Electro
Mechanical SystemMEMS)电效应系统也得到了速的发展和应用,
为精密仪器、数码产品、医疗器械以及航空航天等领域的研究热点,国家
纳米技术和微型机械系统21的关键技术之[1]MEMS技术的发展对微型
构件的微加工技术带来挑战,微细加工技术[2]是基于现代科学的一门综合性技术
由于微机械广泛的应用前景大的 ,因于微细产品的及围
微细加工所进行的学研究,一是生物学、医学、学、力学、材料学以及航空
航天、机械工程和电子工程等领域的热研究课题,世界工业发达国家美国
本及欧洲国投量资资助这项研究[3]同时,以/纳米技术为基础,
用现代实验方法和手段的微塑性成形技术逐渐成为塑性加工的研究热点之
[4]。如1-1微塑性成形技术是以塑性加工的方式来生产尺寸处毫米
结构件的工艺技术,无切削高效率和成本等点。
微型零部模化生产的关键技术之一[5]
微加工技术的发展产品微型化需求,不希望用的
电子器件小型化和化,而且技也有类似要求例如医疗器械、
器及电子器械的发求制微小。随着微型化趋势的发展,微型
产品的加工在个加制造地位重要产品
微型数码设备到医等各个方面,微广的应用空间。目前
微型螺栓连杆以及弹等微型件已广泛应用在机、笔记本电微型航系
统、医疗器械以及微型传器等。大的市场亦极大地推动了微细加工技术的
发展,先后出现了精密机械加工、蚀刻LIGALIGA技术等技术
而微细成形工艺(冲裁弯曲拉延、拉深、塑性挤压压印)则具有大批量
高效率、高精度、高密短周期成本等一特有的[6]
然而微细塑性成形技术不是传统塑性成形工艺的简单等比例缩小,而是
个崭新的研究领域。由于微塑性成形是在微尺度范围内发生,塑性变的大
接近晶粒尺寸,因不能忽视材料的微结构对材料微塑性成形性能的
1
摘要:

摘要随着微机电系统(MEMS)和微电子工业的发展,微型产品得到了飞速的发展和广泛的应用。产品微型化已成为一种趋势,已成为精密仪器、数码产品、医疗器械以及航空航天等领域的研究热点,是人们认识和把握微观世界的高新技术之一MEMS技术的发展对微型构件的微成形技术带来挑战,然而微细塑性成形技术并不是传统塑性成形工艺的简单等比例缩小,而是一个崭新的研究领域。而由于试件尺寸减小所引起的尺寸效应现象亦不容忽视。尺寸效应使得材料的流动应力、各向异性、延展性和材料的成形极限等都发生了变化,同时也影响着金属板材的成形性能。本文根据微细塑性成形技术特点及发展现状,采用微拉伸试验与数值模拟技术相结合的方法,对H62铜...

展开>> 收起<<
H62黄铜薄板尺寸效应及微拉深成形性能的研究.doc

共65页,预览7页

还剩页未读, 继续阅读

作者:陈辉 分类:高等教育资料 价格:15积分 属性:65 页 大小:9.97MB 格式:DOC 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 65
客服
关注