香蕉冷冻干燥实验和基于Fluent的数值计算

VIP免费
3.0 陈辉 2024-11-19 6 4 2.2MB 53 页 15积分
侵权投诉
摘要
真空冷冻干燥技术可使干燥后的物料脱水彻底,营养成分损失少,便于运输
和长期保存,是一项新兴的用于食品、药品和生物制品的保存方法。由于生产成
本高,如何缩短冻干周期是冻干行业发展需要解决的重要课题之一。
升华干燥结束点的确定,是冻干控制的关键点,对于此点的判断有助于缩短
冻干周期。建立适当的数值模型,可对冷冻干燥过程加以预测,有助于升华干燥
结束点的判定。目前对冷冻干燥问题的数值模拟已开始由稳态向非稳态方向发展。
非稳态模型精度较高,不过求解较困难。若运用专业 CFD 软件 Fluent 来进行计算,
可以提高效率。因此,本文建立了一套适于 Fluent 的非稳态冷冻干燥模型,编写
所需的程序以使 Fluent 能够对此模型进行计算,以得出香蕉升华干燥过程的温度
分布,并预测其升华干燥时间。具体工作如下:
1)用 DSC 测量香蕉的共晶点和共融点温度,分别为-18.01-6.66
以此确定冻结温度为-40℃,一次干燥温度为-25。根据文献中查得的香蕉塌陷
温度,确定香蕉二次干燥温度为 40℃。对香蕉进行冷冻干燥,其中一次干燥和二
次干燥时间共 7.2 小时,其中升华干燥时间为 3.2 小时。
2为得到模拟所需参数,用微 CT 机测量冻干香蕉的孔隙率,用热线法测
量冻干香蕉的导热系数,用 DSC 测量冻干香蕉的比热容,结果分别为 15.57%
k)m0.04335W/(
,2968
 
KkgJ
。根据参数用体积平均分数算出干燥层及冻结
层导热系数、冻结层密度及比热容。
3对真空冷冻干燥升华阶段物料内部的传热传质特性进行分析,在非稳态
模型的基础上进行适当简化。编译升华界面移动速度 UDF确定 CFD 计算模型,
确定物理系统的计算区域,边界条件以及网格拓朴结构和求解过程。
4使用 Gambit Fluent 对模型进行网格划分及求解。得到了冷冻干燥升
华阶段各时间段的温度分布。用所得结果与实验进行对比,其升华阶段时间基本
吻合,说明用 Fluent 来对冷冻干燥升华阶段模型进行计算,是可行的。
关键词:冷冻干燥 数值模拟 温度场 香蕉
ABSTRACT
Vacuum freeze-drying is a popular method for preservation of food, pharmacy and
biological products. The product dried by vacuum freeze-drying can dehydrated
completely. It has a less lose on nutrients and fit for preservation and transport. For its
high costs, how to reduce the time of vacuum freeze-drying is an important problem
for vacuum freeze-drying industry.
The confirmed end of sublimation is a key point of control on freeze-drying. It is
useful for reducing freeze-dried time. To establish a model can predict the process of
freeze-drying. It is helpful for confirming the end of sublimation. The development
direction of numerical simulation is from steady to unsteady. The unsteady model is
more accuracy but more difficult to solve. It can be more efficient if we use Fluent
which is CFD software to calculate. So this paper establishes an unsteady model fitted
for Fluent and programs a UDF to calculate the temperature in product and predict the
time of sublimation. The main work of this paper is as follows:
(1) Use DSC to measure the eutectic point temperature and inclusive point
temperature. The eutectic point temperature is -6.66and the inclusive
point temperature is -18.01. It confirms the frozen temperature and the
sublimation drying temperature by -40and -25. According to the
collapse temperature, the secondary drying temperature is 40. Freeze
dry the banana. The total drying time is 7.2 hours. The sublimation
drying time is 3.2 hours and the secondary drying time is 4 hours.
(2) To get the parameter which is required in numerical simulation freeze
drying, measure the porosity rate by macro-CT, the thermal conductivity
by hot-wire method and the specific heat by DSC. The result is
respectively 15.57%,
k)m0.04335W/(
and 2968
 
KkgJ
. Use the
parameters to calculate the thermal conductivity of frozen layer and
drying layer, the density and specific heat of frozen layer.
(3) Analysis the conduction of heat and mass in freeze-drying products.
Compiles the UDF for sublimation interface moving speed. Confirm the
CFD model, the calculate zone and the mesh of physics system, confirm
the process of calculation compiles the UDF.
(4) Use Gambit to establish the mesh and Fluent to calculate the model.
Obtain the temperature distribution. Compare the result with the data
obtained by experiment. It shows that the result is close to the experiment.
It means we can use the Fluent to calculate sublimation freeze drying
model.
Key words: Freeze-drying, numerical simulation, temperature
distribution, banana.
目 录
中文摘要
ABSTRACT
第一章 ...............................................................................................................1
§1.1 真空冷冻干燥的原理 ....................................................................................1
§1.2 真空冷冻干燥的发展与现状 ........................................................................1
§1.3 真空冷冻干燥的基本过程及应用 ................................................................2
§1.3.1 真空冷冻干燥主要过程 .....................................................................2
§1.3.2 真空冷冻干燥的应用 .........................................................................3
§1.4 冷冻干燥技术的要点和难点 ........................................................................3
§1.5 冷冻干燥数学模型的研究现状 ....................................................................4
§1.5.1 URIF 模型 ............................................................................................4
§1.5.2 非稳态模型 .........................................................................................5
§1.5.3 准稳态模型 .........................................................................................6
§1.6 模型求解方法的现状与展望 ........................................................................7
§1.6.1 解析解法 .............................................................................................7
§1.6.2 数值解法 .............................................................................................7
§1.6.3 模拟法及实验法 .................................................................................9
§1.7 本课题的研究目的及内容 ............................................................................9
第二章 香蕉的真空冷冻干燥实验 ...............................................................................11
§2.1 香蕉共晶点和共融点温度的测量 ..............................................................11
§2.1.1 测量所需材料及设备 .......................................................................11
§2.1.2 差示扫描量热仪结构及测量原理 ...................................................11
§2.1.3 实验步骤 ...........................................................................................13
§2.1.4 实验结果 ...........................................................................................13
§2.2 香蕉的冷冻干燥 ..........................................................................................15
§2.2.1 真空冷冻干燥机 ................................................................................15
§2.2.2 预冻温度、一次干燥温度、二次干燥温度和真空度的确定 ........17
§2.2.3 香蕉冷冻干燥实验步骤 ...................................................................17
§2.2.4 香蕉冷冻干燥实验分析 ...................................................................17
§2.3 本章小结 ......................................................................................................18
第三章 冻干香蕉参数测量 .........................................................................................19
§3.1 冻干香蕉导热系数的测量 ..........................................................................19
§3.1.1 热线法导热系数测量仪的原理 .......................................................19
§3.1.2 测试系统 ...........................................................................................20
§3.1.3 导热系数的测量 ..................................................................................22
§3.2 冻干香蕉比热容的测量 ..............................................................................23
§3.2.1 实验设备 ...........................................................................................23
§3.2.2 差示扫描量热仪比热容测量的原理 ................................................23
§3.2.3 标定 ...................................................................................................23
§3.2.4 差示扫描量热仪比热容测量的步骤 ...............................................24
§3.2.5 测量结果及分析 ...............................................................................24
§3.3 冻干香蕉孔隙率的测量 ..............................................................................26
§3.3.1 测量设备 ...........................................................................................26
§3.3.2 测量步骤及测量结果 .......................................................................27
§3.4 本章小结 ......................................................................................................30
第四章 冷冻干燥升华阶段模型的建立及求解 ...........................................................31
§4.1 模型的假设和建立 ......................................................................................31
§4.1.1 模型假设 ...........................................................................................31
§4.1.2 模型的建立 .......................................................................................31
§4.2 初始条件和边界条件 ..................................................................................33
§4.2.1 初始条件 ...........................................................................................33
§4.2.2 边界条件 ...........................................................................................33
§4.3 所需参数 ......................................................................................................33
§4.4 模型的求解 ..................................................................................................35
§4.4.1 Fluent 求解的方法 ..........................................................................35
§4.4.2 主要计算步骤 ...................................................................................38
§4.5 计算结果及分析 ..........................................................................................39
§4.6 本章小结 ......................................................................................................40
第五章 结论与展望 .....................................................................................................41
§5.1 主要结论 ......................................................................................................41
§5.2 对今后工作的展望 ......................................................................................41
附录 .................................................................................................................................42
参考文献 .........................................................................................................................45
在读期间公开发表的论文和承担科研项目及取得成果 .............................................49
致谢 .................................................................................................................................50
第一章 绪论
1
第一章 绪 论
§1.1 真空冷冻干燥的原理
水有三相:固态(冰)、液态(水)、气态(水蒸气)。如图 1-1 所示O
点为三相点,在此点处,固、液、气三相共存。OB 线上冰、水共存,OC 线上水、
气共存,OA 线上冰、气共存。从图中可以看出,当压力低于三相点(气压为 610.5Pa
温度 273.16K)以下,固态的冰在温度升高时可不经过液相而直接升华为汽态。
1-1 水的三相图
真空冷冻干燥即根据此原理,先将物料冷却,使其中大部分水冻结成冰,其
余的水份和物料成分形成非晶态(玻璃态),然后在真空环境下,对已冻结的物
料在低温下加热,以使物料中冰升华,实现升华干燥(一次干燥),接着在真空
条件下对物料进行升温加热,实现解吸干燥(二次干燥),以除去吸附水[1]。经
过冻干后的制品脱水彻底,呈多孔状,体积与冻干前基本相同,其物理、化学和
生物性状基本不变,最大限度地保持了生物组织的活性。其营养成分损失少,质
量轻,复水性好,便于运输和长期保存。
§1.2 真空冷冻干燥的发展与现状
1890 Altmann 在制作标本时,采用冷冻干燥法冻干了各种器官和组织[2]
这是冻干在制作生物标本中的最早应用。1909 Shackell[3]制作了用于细菌学和
血清学的冻干设备,虽然简单但却是以后冻干机的雏形。1935 年,W.J.Elser [4]
制作了第一台商业用冻干机,首先改变以往使用真空泵来直接抽取水蒸气的方法,
采用了低温冷阱来扑捉逸出的水蒸气。并首次采用主动加热的方法,强化了升华
摘要:

摘要真空冷冻干燥技术可使干燥后的物料脱水彻底,营养成分损失少,便于运输和长期保存,是一项新兴的用于食品、药品和生物制品的保存方法。由于生产成本高,如何缩短冻干周期是冻干行业发展需要解决的重要课题之一。升华干燥结束点的确定,是冻干控制的关键点,对于此点的判断有助于缩短冻干周期。建立适当的数值模型,可对冷冻干燥过程加以预测,有助于升华干燥结束点的判定。目前对冷冻干燥问题的数值模拟已开始由稳态向非稳态方向发展。非稳态模型精度较高,不过求解较困难。若运用专业CFD软件Fluent来进行计算,可以提高效率。因此,本文建立了一套适于Fluent的非稳态冷冻干燥模型,编写所需的程序以使Fluent能够对此模...

展开>> 收起<<
香蕉冷冻干燥实验和基于Fluent的数值计算.pdf

共53页,预览6页

还剩页未读, 继续阅读

作者:陈辉 分类:高等教育资料 价格:15积分 属性:53 页 大小:2.2MB 格式:PDF 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 53
客服
关注