微弧氧化法制备植入钛合金活化层的研究

VIP免费
3.0 高德中 2024-11-19 5 4 7.12MB 72 页 15积分
侵权投诉
摘 要
钛合金具有良好的生物相容性、力学性能以及高弹性模量的优点,是目前最常
用的硬组织替代生物材料。但它具有生物活性差等缺点,植入体内后不能和新骨
形成骨性结合,且愈合时间长,因此需要对其表面进行表面改性以提高其表面生
物活性。
本文采用微弧氧化方法在钛合金表面制备含钙、磷生物活性元素的多孔结构氧
化膜,利用扫描电镜SEM电子能谱(EDSX射线衍射仪XRD等方法
观察氧化膜表面形貌、组成成分和物相组成。研究了脉冲电压、脉冲频率、脉冲
占空比和处理时间工艺参数对氧化膜的性能如:表面形貌、组成成分和厚度的影
响,并研究了电解液配方和浓度对氧化膜层形貌、钙磷元素的含量、膜层厚度和
组成物相的影响。利用显微硬度计、划痕仪和摩擦磨损试验机对膜层表面硬度、
膜层与基体金属的结合力和膜层耐磨性进行测试,最后利用模拟体液浸泡方法测
试氧化膜层的生物活性。
研究表明:微弧氧化工艺参数和电解液配方对制得氧化膜的表面形貌、钙磷生
物活性元素含量和膜层厚度影响较大,电解液浓度对制得氧化膜的表面形貌、钙
磷生物活性元素含量、膜层厚度、物相组成、膜层表面硬度、膜层与基体结合力
和摩擦磨损性能有重大影响。在乙酸钙和磷酸二氢钠配制的电解液中,当乙酸钙
0.13mol/L磷酸二氢钠为 0.06mol/L脉冲正电压为 460V脉冲频率为 400HZ
正向脉冲占空比为 15%、处理时间为 5分钟时制得膜层各个性能都比较良好,膜
层孔洞大小在 3~4μm 左右且分布比较均匀,主要由锐钛矿相的 TiO2和金红石相的
TiO2组成,膜层与基体结合强度高,其硬度与耐磨性能都明显优于钛合金基体。
膜层在模拟体液中浸泡 4天后表面有球状物生成,浸泡 11 天后球状物明显长大,
表面生成的膜层更厚,经过能谱检测发现该膜层主要由钙、磷和氧元素组成,有
良好的生物活性,经过 XRD 检测发现该膜层主要物相为羟基磷灰石,表明微弧氧
化方法制得氧化膜具有良好的生物活性与骨诱导性。
论文还对微弧氧化过程中电解液中组成元素进入膜层的机理进行了初步分析,
认为电泳机制是钙、磷元素到达阳极表面主要方式。而阳极表面的高温使钙、磷
元素融化并被烧结在氧化膜中,制得含钙磷元素的氧化膜。
关键词:钛合金 微弧氧化 膜层性能 模拟体液 生物活性 羟基磷灰石
ABSTRACT
Titanium alloy has excellent properties of biocompatibility, mechanical properties
and elastic modulus. It is the substituting materials of hard organizations which is used
most widely now. But it has the shortcoming of poor surface bioactivity, lead to it has
weak binding capacity with bone and has long healing time after implantation into
organism. So it has great meaning to modify the surface to improve the bioactive
property.
In this paper, the porous coating which contain Ga and P bioactive elements was
fabricated on the surface of Ti6Al4V substrate using Micro-arc Oxidation method. The
surface morphology, bioactive elements contents and the phase composition were
explored by scanning electron microscopy (SEM), energy dispersive spectrum (EDS)
and X-ray diffraction (XRD). This paper studied the effect of electrolytic component
and concentration, pulse voltage, frequency, duty-cycle and treating time on the
morphology, bioactive elements contents, thickness of the coating and phase
composition. The coating’s microhardness was test by microhardness instrument, the
wearing resistance was test by friction and wear tester, the bonding strength with
titanium alloy was test by scratch tester. At last the coating’s surface bioactivity was test
by soaked in the SBF.
The result shows that the process parameter of MAO and the electrolytic component
have a great effect on the surface morphology, bioactive elements contents and the
coating’s thickness. The electrolytic concentration has a great effect on the surface
morphology, bioactive elements contents, the thickness, the composition, the surface of
hardness, the bonding strength with titanium and the wearing resistance of the coating.
The bioactive coating obtained on the surfaced of Ti6Al4V substrate in the electrolyte
comprising Ca(CH3COO)2 and Na2HPO4 with c(CaAc) of 0.13 mol/L, c(Na2HPO4)
of 0.09 mol/L, pulse voltage of 460V, frequency of 400HZ, duty-cycle of 15%,and
treating time of 5 min has a homogeneous pore size and homogeneous distribution, it’s
hardness and wearing resistance are much better than titanium alloy. The bulb could be
formed on the surface of the coating after soaked in the SBF for 4 days, and the bulb
growth much larger after sock in SBF for 11 days. And the film formed on the coating is
thicker. By EDS we can sure the film is composed by calcium and phosphorus, so it has
great bioactive property. By XRD we can know the main composition is hydroxyapatite
which suggested that the MAO coatings process good bone inducement abitity.
This paper also study the principle of the electrolytic component elements come into
to coating during the MAO. The electrophoresis mechanism is the main way that Ca
and P elements reach the anode. The high temperature melt the bioactive element and
sintering into the coating during MAO.
Key words: Titanium, Micro-arc oxidation(MAO), Coating properties,
Simulated body fluid(SBF), bioactivity, Hydroxyapatite
目 录
中文摘要
ABSTRACT
第一章 ............................................................................................................... 1
§1.1 生物医用金属材料介绍 ....................................................................................1
§1.2 钙磷材料的生物活性 ........................................................................................1
§1.3 医用钛合金概述 ................................................................................................2
§1.4 医用钛合金表面改性 ........................................................................................3
§1.4.1 材料表面涂覆羟基磷灰石 ......................................................................... 3
§1.4.2 材料表面制备生物活性氧化层 ................................................................. 4
§1.5 微弧氧化原理 ....................................................................................................5
§1.6 钛合金微弧氧化特点 ........................................................................................7
§1.6.1 钛合金微弧氧化膜特点 .............................................................................7
§1.6.2 钛合金微弧氧化影响因素 .........................................................................7
§1.6.3 钛合金微弧氧化研究现状 .........................................................................9
第二章 实验材料、设备及方法 ...................................................................................10
§2.1 实验材料及设备 ..............................................................................................10
§2.1.1 钛合金试样 ............................................................................................... 10
§2.1.2 生物活性体外模拟实验 ........................................................................... 10
§2.1.3 实验装置 ................................................................................................... 11
§2.2 实验方法 ..........................................................................................................11
§2.2.1 实验工艺流程 ........................................................................................... 11
§2.2.2 分析测试方法 ........................................................................................... 12
§2.3 本章小结 ..........................................................................................................14
第三章 工艺参数对 MAO 膜特性的影响 ................................................................... 15
§3.1 脉冲电压对微弧氧化膜层的影响 ..................................................................15
§3.1.1 脉冲电压对微弧氧化膜层表面形貌的影响 ........................................... 15
§3.1.2 脉冲电压对微弧氧化膜钙磷元素含量的影响 ....................................... 16
§3.1.3 脉冲电压对微弧氧化膜厚度的影响 ....................................................... 18
§3.2 脉冲频率对微弧氧化膜层的影响 ..................................................................20
§3.2.1 脉冲频率对微弧氧化膜表面形貌的影响 ............................................... 20
§3.2.2 脉冲频率对微弧氧化膜钙磷元素含量的影响 ....................................... 21
§3.2.3 脉冲频率对微弧氧化膜厚度的影响 ....................................................... 22
§3.3 脉冲占空比对微弧氧化膜层的影响 ..............................................................25
§3.3.1 脉冲占空比对微弧氧化膜表面形貌的影响 ...........................................26
§3.3.2 脉冲占空比对微弧氧化膜钙磷元素含量的影响 ...................................27
§3.3.2 脉冲占空比对微弧氧化膜厚度的影响 ...................................................29
§3.4 微弧氧化时间对氧化膜层的影响 ..................................................................29
§3.4.1 微弧氧化时间对氧化膜表面形貌的影响 ...............................................29
§3.4.2 微弧氧化时间对氧化膜钙磷元素含量的影响 .......................................30
§3.4.3 微弧氧化时间对氧化膜厚度的影响 .......................................................31
§3.5 本章小结 .........................................................................................................32
第四章 电解液配方对 MAO 膜特性的影响 ............................................................... 34
§4.1 电解液中乙酸钙浓度对氧化膜层的影响 ......................................................34
§4.1.1 电解液中乙酸钙浓度对氧化膜表面形貌的影响 ...................................34
§4.1.2 电解液中乙酸钙浓度对氧化膜钙磷元素含量的影响 ...........................35
§4.1.3 电解液中乙酸钙浓度对氧化膜厚度的影响 ...........................................37
§4.2 电解液中磷酸而氢钠浓度对氧化膜层的影响 ..............................................37
§4.2.1 电解液中磷酸二氢钠浓度对氧化膜表面形貌的影响 ........................... 37
§4.2.2 电解液中磷酸二氢钠浓度对氧化膜钙磷元素含量的影响 ................... 39
§4.2.3 电解液中磷酸二氢钠浓度对氧化膜厚度的影响 ................................... 40
§4.3 本章小结 .........................................................................................................41
第五章 电解液浓度对氧化膜特性的影响 ...................................................................42
§5.1 电解液浓度对氧化膜的影响 ..........................................................................42
§5.1.1 电解液浓度对氧化膜表面形貌的影响 ...................................................42
§5.1.2 电解液浓度对氧化膜钙磷元素含量的影响 ...........................................43
§5.1.3 电解液浓度对氧化膜厚度的影响 ...........................................................44
§5.1.4 电解液浓度对氧化膜层物相的影响 .......................................................45
§5.2 电解液浓度对氧化膜表面硬度的影响 ..........................................................47
§5.3 电解液浓度对氧化膜层与基体结合力的影响 ..............................................48
§5.4 电解液浓度对氧化膜层摩擦磨损性能的影响 ..............................................51
§5.4.1 电解液浓度对氧化膜层表面摩擦系数的影响 .......................................52
§5.4.2 电解液浓度对氧化膜层耐磨损性能的影响 ...........................................53
§5.5 微弧氧化膜层形成机理研究 ..........................................................................55
§5.5.1CaP元素进入膜层的机理分析 ............................................................56
§5.6 本章小结 .........................................................................................................57
第六章 MAO 膜层的生物活性研究 ............................................................................ 58
§6.1 膜层表面形貌分析 ..........................................................................................58
§6.2 膜层能谱分析 ..................................................................................................59
§6.3 膜层物相组成分析 ..........................................................................................60
§6.4 羟基磷灰是形成机理探讨 ..............................................................................61
§6.2 本章小结 ..........................................................................................................61
第七章 结论 ...................................................................................................................62
参考文献 .........................................................................................................................63
在读期间公开发表的论文和承担科研项目及取得成果 .............................................68
...............................................................................................................................69
摘要:

摘要钛合金具有良好的生物相容性、力学性能以及高弹性模量的优点,是目前最常用的硬组织替代生物材料。但它具有生物活性差等缺点,植入体内后不能和新骨形成骨性结合,且愈合时间长,因此需要对其表面进行表面改性以提高其表面生物活性。本文采用微弧氧化方法在钛合金表面制备含钙、磷生物活性元素的多孔结构氧化膜,利用扫描电镜(SEM)、电子能谱(EDS)和X射线衍射仪(XRD)等方法观察氧化膜表面形貌、组成成分和物相组成。研究了脉冲电压、脉冲频率、脉冲占空比和处理时间工艺参数对氧化膜的性能如:表面形貌、组成成分和厚度的影响,并研究了电解液配方和浓度对氧化膜层形貌、钙磷元素的含量、膜层厚度和组成物相的影响。利用显微...

展开>> 收起<<
微弧氧化法制备植入钛合金活化层的研究.pdf

共72页,预览8页

还剩页未读, 继续阅读

作者:高德中 分类:高等教育资料 价格:15积分 属性:72 页 大小:7.12MB 格式:PDF 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 72
客服
关注