三维电解剖标测系统中心腔标测图与CT分割图像配准方法的研究

VIP免费
3.0 高德中 2024-11-19 5 4 3.65MB 57 页 15积分
侵权投诉
CT
房颤是一种常见的严重威胁人类生命与健康的心律失常疾病。房颤发作时会
产生不规则心跳,并伴随胸痛、心悸、呼吸困难、眩晕、昏厥等症状。随着年龄的增
长,房颤的发病率明显增高,而且患中风和心血管并发症的风险也增大。
房颤的药物治疗难以控制,而且长期服用药物会造成严重的不良反应。近年
来,国内外开展的导管射频消融已经成为治疗房颤的重要手段。传统的标测是在
X线透视下完成的,对于发生机制明确的心律失常具有简单、快捷的优点,然而
对于复杂的快速心律失常,医生需要根据心腔内各部位的激动传导情况来确定病
灶的位置和异常信号的传导路径,因此各种心脏三维电解剖标测系统应运而生。
EnSite
3000 和电生理标测系统 CARTOTM XP
心脏三维电解剖标测系统中的图像融合技术有利于提高手术的准确性和安全
性,简化手术操作,降低手术费用,提高手术成功率,保证线性消融的透壁性、
完整性和连续性,不但明显地缩短手术时间和减少 X线曝光量,而且可以减少相
关并发症的发生,有利于降低术后房颤的复发率。因此,三维电解剖标测系统中
图像融合的结果直接影响到手术的治疗效果。
为了进一步提高导管射频消融治疗房颤的成功率,在迭代最近点( ICP
法和点(stochastICP启发提出一种维心
图 与 CT 分割表面图像配准的新方法,即回溯迭代最近点(Retrospective
ICPRICP)算法。在图像配准的过程中,给三维心腔标测图增加随机扰动使其产
生形变,而且在迭代过程中自动减少随机扰动的幅值。RICP 算法能够挣脱局
值的束缚接近的结,有效地ICP 算法
易陷三维图与 CT 图像
准成功率。利用多组体模型模拟数据和一临床据进行实验验证,结果表明,
RICP 算法最的配准成功率和配准精度明显优于ICP 的算法,实现了三
维心CT 始偏
均匀的三维心腔标测图,RICP 算法也能够到较的配准结果。
因此,优化后的图像配准算法能加准确、安全和有效地帮助医生
融导管进射频消融治疗房颤。
键词:房颤 心腔标测图 图像配准 ICP 局 随机扰动
ABSTRACT
Atrial fibrillation (AF) is the most common cardiac arrhythmia which seriously
threats to human health and life. It results in irregular heartbeats and may accompany
chest pain, palpitations, breathing difficulties, dizziness, fainting. The risk of AF
increases with age, and people with AF usually have a significantly increased risk of
stroke and other cardiovascular complications.
It is difficult to control the drug treatment of AF and long-term medication can
cause serious adverse reactions. In recent years, radiofrequency ablation carried out at
home and abroad has become an important treatment for AF. The traditional mapping is
done under X-ray which is a simple and quick method for arrhythmia of clear
mechanism, but for complex tachycardia, the doctor determines the lesion positions and
abnormal signal transduction paths in accordance with the intracardiac conduction. So
several three-dimensional electroanatomical mapping systems came into being.
Currently, the most popular clinical application systems of radiofrequency ablation for
AF are the three-dimensional non-contact mapping system EnSite 3000 and the
electrophysiological mapping system CARTOTM XP.
The ablation procedure of AF under three-dimensional electroanatomical mapping
system can improve the accuracy and security, simplify the surgical procedure, reduce
operation cost, increase success rate, ensure continuity and completeness of linear
ablation. It not only reduces the operation time and X-ray, but also significantly reduces
the complications and the recurrence rate of AF.
To improve the intra-operative image fusion performance in the ablation procedure
of AF treatment, this paper presents a novel rigid registration method named
retrospective iterative closest point (RICP) algorithm for three-dimensional cardiac
electroanatomical maps and CT segmented surfaces, inspiring by iterative closest point
(ICP) algorithm and stochastICP algorithm. Random perturbation is introduced to
deform the cardiac maps in the registration process and the magnitude of deformation
automatically attenuates during iterations. Compared to the typical ICP algorithm that
often converges to local minima, the RICP algorithm can converge to a solution with
smaller registration error. Through experiments using in vivo, simulation and clinical
data, the results of RICP show significant improvements on the registration accuracy
and success rate over the existing method being used in the clinical environment. And
the RICP algorithm can obtain better results when the initial offsets between the two
models are much larger or the mapping points on cardiac maps are non-uniform
distribution.
In sum, the improved intra-operative registration results can help physicians easily
navigate the catheter during the AF interventional procedures.
Key Word: AF, Cardiac maps, Image registration, ICP, Local minima,
Random perturbation
目 录
ABSTRACT
章 绪论........................................................1
§1.1 心电传导和心电图...........................................1
§1.2 房颤.......................................................3
§1.3 房颤的临床治疗.............................................4
第二章 心脏三维电解剖标测系统......................................7
§2.1 三维非接触标测系统 EnSite 3000..............................7
§2.1.1 EnSite 3000 ....................................8
§2.1.2 EnSite 3000 ....................................8
§2.1.3 EnSite 3000 标测过程....................................9
§2.1.4 相关技术要求..........................................10
§2.2 电生理标测系统 CARTOTM XP...................................11
§2.2.1 CARTOTM XP ...................................11
§2.2.2 CARTOTM XP 功能.........................................13
§2.2.3 主要图像信息..........................................13
§2.2.4 图像融合技术..........................................14
§2.2.5 CARTOTM XP 势.........................................15
§2.3 CARTO MERGE 功能软件.......................................15
§2.3.1 图像融合和准确性......................................15
§2.3.2 临床应用..............................................16
§2.3.3 CARTO MERGE 图像配准...................................17
§2.4 章小..................................................17
图像配准方法...............................................18
§3.1 图像配准..................................................18
§3.1.1 匹配标准..............................................18
§3.1.2 寻优方法..............................................18
§3.1.3 配准方法..............................................19
§3.2 迭代最近点(ICP)算法.....................................20
§3.2.1 ICP 算法描述...........................................20
§3.2.2 ICP 搜索最近点的方法...................................21
§3.2.3 ICP 算法变体...........................................22
§3.2.4 ICP 算法...........................................22
§3.3 随机迭代最近点(stochastICP)算法.........................23
§3.3.1 StochastICP ...................................23
§3.3.2 StochastICP .......................................24
§3.4 回溯迭代最近点(RICP)算法................................25
§3.4.1 KD-Tree...............................................25
§3.4.2 SVD...................................................28
§3.4.3 RICP 算法..............................................28
§3.4.4 参数控制..............................................33
§3.5 章小..................................................34
第四章 RICP 算法的实现.......................................35
§4.1 实验数据来源..............................................35
§4.2 三维模型可视化.............................................35
§4.2.1 OpenGL 介............................................36
§4.2.2 三维心腔标测图和 CT 分割图像显.......................38
§4.3 RICP 算法的............................................39
§4.3.1 实验结果与分析........................................39
§4.3.2 实验总..............................................44
§4.4 章小..................................................45
第五章 总结与建议.................................................46
§5.1 总......................................................46
§5.2 建议......................................................47
参考献..........................................................48
摘要:

三维电解剖标测系统中心腔标测图与CT分割图像配准方法的研究摘要房颤是一种常见的严重威胁人类生命与健康的心律失常疾病。房颤发作时会产生不规则心跳,并伴随胸痛、心悸、呼吸困难、眩晕、昏厥等症状。随着年龄的增长,房颤的发病率明显增高,而且患中风和心血管并发症的风险也增大。房颤的药物治疗难以控制,而且长期服用药物会造成严重的不良反应。近年来,国内外开展的导管射频消融已经成为治疗房颤的重要手段。传统的标测是在X线透视下完成的,对于发生机制明确的心律失常具有简单、快捷的优点,然而对于复杂的快速心律失常,医生需要根据心腔内各部位的激动传导情况来确定病灶的位置和异常信号的传导路径,因此各种心脏三维电解剖标测系...

展开>> 收起<<
三维电解剖标测系统中心腔标测图与CT分割图像配准方法的研究.doc

共57页,预览6页

还剩页未读, 继续阅读

作者:高德中 分类:高等教育资料 价格:15积分 属性:57 页 大小:3.65MB 格式:DOC 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 57
客服
关注