气动电磁阀流量特性与节能关系研究

VIP免费
3.0 高德中 2024-11-19 5 4 5.1MB 64 页 15积分
侵权投诉
气动电磁阀流量特性与节能关系研
节能的重要性近些年越来越受到广泛关注,因此能量利用率较低的气动系统
节能研究意义愈加凸显,而作为气动系统重要组成部分的电磁阀也是节能研究
的内容之一。本文针对压缩空气通过气动电磁阀的能量损失与流量特性参数临界
力比 b关系了理论分和试研究然后过仿真手求提b
达到节能效果的流道结构优化方案。
首先引入压缩空气能量损失评价指
,通过理论分析推导出单位质
量流量压缩空气通过电磁阀的
损计算公式,并讨论了
损的影响因素。试验
部分选用声速流C相同b值不同的两个电磁阀作为被测对象,通过测量电
磁阀上下游的压力值p2p1来计算b值差异对压缩空气
损失的影响。试验数据
计算结果和理论推导结论相一致:对于b值不同的两个电磁阀,在质量流量和上
游压力一定的条件下,压缩空气通过b值较大的电磁阀
损总是较小的;随着
质量流量增大,b值较大的电磁阀节能效果愈加显著。然后在此基础上,通过进
一步理论分析发现:在质量流量和上游压力一定的条件下,如果提高电磁阀b值,
压缩空气的
损将以近似线性方式减小。
试验所用阀内部流进行维实建模经过Gambit划分网格
Fluent仿真分析压缩空气在阀体内部的流动情况。在验证了模型可靠性后,通
过分析压缩空气流场找到压力损失最显著以及产生明显涡流的位置,提出流道
结构优化方案。最后对优化模型进行仿真,验证流道结构的优化是提高电磁阀b
值并且减小压缩空气能量损失的有效手段。
通过以上理论、试验和仿真分析可知,作为电磁阀流量特性参数之一临界压力
b是一个能够直观反映出气动电磁阀节能程度的重要指标,为节能的气动系统
设计选型提供了一定的依据。此外,在电磁阀结构设计时,可以结合CFD软件,
对流道进行优化实现b值的提高,达到节能效果。
关键词:气动电磁阀 临界压力比
能量损失 数值仿真 结构优化
ABSTRACT
In recent years, the importance of energy conservation has been in the limelight
of the whole society, and subsequently the situation of energy consumption in
pneumatic system has inevitably aroused more and more concern. As an indispensable
part of pneumatic system, solenoid valves would take a significant role in the study of
energy conservation in pneumatic system. Through theoretical analysis and test, the
relationship between flow rate characteristic——critical pressure ratio b and energy
loss of compressed air going through the solenoid valve was studied. Besides, the
method of numerical simulation was adopted to observe the flow field in the valve
and optimize the channel configuration for a larger b and lower energy loss.
Before theoretical analysis, the thermodynamic concept of exergy was
introduced as the evaluating criterion of compressed-air energy loss. Through
theoretical deduction, the calculation formula of compressed-air exergy was
constructed, of which the influential factors were also discussed. In the test, two
solenoid valves were chosen as the test objects with their flow rate characteristics C
equal and b different and the parameters to be tested were the inlet and outlet
pressures of the valves. The results of test corresponded with the theoretical analysis,
and based on which it can be arrived at that: Given the mass flow rate and inlet
pressure unchanged, for two solenoid valves with different b, the exergy loss of
compressed air going through the valve was greater with a larger b; With the mass
flow rate increasing, the energy-saving effect of the valve with a larger b would be
more and more remarkable. On the basis of conclusions stated above, a further
analysis was carried out and another conclusion can be drawn that: Given the mass
flow rate and inlet pressure unchanged, the exergy loss of compressed air will decline
almost in a linear way when b was raised.
The three-dimensional model of the flow channel was built based on the valve in
the test. After being meshed in Gambit, the model was imported into Fluent to
simulate the flow field in the valve. Firstly, the reliability of the model was examined
by comparison between test and simulation results. Then, the distribution of pressure
contours and velocity vectors were displayed in order to analyze the influence of flow
channel configuration on flow field and find the typical zone with maximum pressure
drop and large eddy currents. Afterwards, a local configuration modification was
made on the original model to achieve a larger b and lower energy loss of compressed
air. At last, the optimization effect was examined by comparison between the original
and modified models.
From all the theoretical deduction, test results and simulation analysis, it can be
concluded that the critical pressure ratio b, one of the flow rate characteristics, can be
an index for energy loss in solenoid valves, and according to it the solenoid valves
selection can be guided in pneumatic system, furthermore, to obtain a larger b the
flow channel configuration should be optimized.
Key Words: solenoid valve, critical pressure ratio, exergy, energy
loss, numerical simulation, configuration optimization
目 录
中文摘要
ABSTRACT
第一章 ..................................................................................................................1
§1.1 引言....................................................................................................................1
§1.2 课题来源............................................................................................................2
§1.3 研究背景............................................................................................................3
§1.3.1 气动系统能量传递和转换过程.................................................................3
§1.3.2 气动系统各个环节的节能研究现状.........................................................5
§1.3.3 气动电磁阀环节的节能研究意义.............................................................9
§1.4 本课题的研究内容及方法..............................................................................10
第二章 气动元件流量特性与压缩空气能量损失分析.............................................11
§2.1 气动元件流量特性的表达方式......................................................................11
§2.1.1 ISO6358 标准:声速流导 C和临界压力比 b........................................11
§2.1.2 GBT14513 标准:壅塞流态下有效截面积 S和临界压力比 b.............12
§2.2 气动系统能量损失的评价指标以及计算公式..............................................13
§2.2.1 空气消耗量...............................................................................................13
§2.2.2 压缩空气做功能力评价指标——
......................................................13
§2.2.3 稳态流动的压缩空气
值计算公式......................................................14
§2.3 压缩空气通过气动电磁阀的
损计算公式.................................................16
§2.3.1
的影响因素分析..............................................................................16
§2.3.2 压缩空气通过电磁阀的
损计算公式..................................................17
§2.3.3 上下游压力比 p2/p1对压缩空气
损的影响.........................................18
§2.4 本章小结..........................................................................................................19
第三章 试验台搭建与试验过程.................................................................................20
§3.1 试验..........................................................................................................20
§3.2 元件选型与试验台搭..................................................................................20
§3.2.1 元件选型...................................................................................................20
§3.2.2 试验台搭...............................................................................................21
§3.3 Labview 数据采集系统...................................................................................22
§3.3.1 序前...............................................................................................22
§3.3.2 序框图...................................................................................................23
§3.4 试验过程..........................................................................................................24
基于电磁阀参数的 b
损关系理论分析................................................25
§4.1 电磁阀流量特性参数的合成..........................................................................25
§4.1.1 两段串联式节流的流量特性参数合成...............................................25
§4.1.2 三段串联式节流的流量特性参数合成...............................................26
§4.1.3 试验用电磁阀的流量特性参数合成.......................................................26
§4.2 据被测电磁阀流量特性参数的理论分析..................................................27
§4.2.1 通过求导数分析 p2/p1
损失的影响.................................................27
§4.2.2 理论分析 p2/p1的影响因素......................................................................29
§4.2.3 理论分析 b值对
损失的影响..............................................................31
§4.3 本章小结..........................................................................................................33
试验数据与理论计算的对比分析.................................................................34
§5.1 试验数据与理论计算结果的对比分析..........................................................34
§5.1.1 b值对 p2/p1影响的试验数据与理论推导结果对比分析.......................34
§5.1.2 b值对
损影响的试验数据与理论推导结果对比分析.......................35
§5.2 b值与
损关系的进一步理论分析..............................................................36
§5.2.1 b化时 p2/p1
损的影响..............................................................36
§5.2.2 b化对
损的影响...........................................................................38
§5.3 本章小结..........................................................................................................40
气动电磁阀流量特性与能量损失仿真分析.................................................41
§6.1 仿真内容介绍..................................................................................................41
§6.2 仿真方法..........................................................................................................41
§6.3 阀体内部流道三维建模与网格划分..............................................................42
§6.3.1 CAD 三维建模.........................................................................................42
§6.3.2 Gambit 进行网格划分.....................................................................44
§6.4 Fluent 仿真参数设置......................................................................................46
§6.4.1 解器以及参数设置.......................................................................46
§6.4.2 性模型选...................................................................................47
§6.4.3 界条件设置...........................................................................................47
§6.5 模型仿真分析..................................................................................................48
§6.5.1 模型的可靠性分析...................................................................................48
§6.5.2 仿真结果分析...........................................................................................50
§6.6 模型优化方案..................................................................................................52
§6.6.1 模型修改...................................................................................................52
§6.6.2 模型修改效果验证...................................................................................53
§6.7 本章小结..........................................................................................................56
结论与展望.....................................................................................................57
§7.1 论文结论..........................................................................................................57
§7.2 展望..................................................................................................................58
......................................................................................................................59
第一章
第一章
1.1 引言
气动pneumatics气动技术”或“气压传动与控制”简称。气动
的动力源是空气压缩质为压缩空气,是一进行能量传递或信号
传递的技术,是实现各种自控制以及生产控制的重要手段[1]于压缩空
气能源无污染的优特性,加上子领域信领域控制领域对气动
技术强烈需求,气动技术在各工业领域用愈加广泛。
从远古开始人们就学会利用空气的能量来成各种工作,但气动技术应
用的雏形还得追溯1776John Wilkinson发明了能产生一个大气压力的空气
压缩1880年,美国出火的气压刹车装置,显出气压传动速、单、
可靠、安全的优,为气动技术的发展应掀开的格20世纪40以后,
于各的产和经,生产的动化水平迫切需要提
高以增加动生产率和提高产质量,因此有高效率、低成本、安全可靠
长使寿命的气动技术应运而生,并且,随着生产动化求的增加而
速发目前已经成为基本的动化技术之一。是压缩空气低的成本优
和广泛的范围使得气动技术领域日益扩大,被人们称“廉
动化技术”
气动技术的传统领域包括汽车机床冶金矿山机械铁路交通以及
油等于气动元件的不以及与电子控制技术密切结合,气动技术
领域断扩大。目前用电服装生产、木材家具制造业已
经大量用了气动技术导体制造动化包装机械食品灌装机械
塑机成型印刷业造纸业经成为气动技术不可缺少领域于电
,大到电视机计算装配,显像管印刷线路板的生产,小到成电路板
微晶制造都离气动技术随着控制迅猛,加上与电子技术
紧密结合,机械手、机器人送机标准化气动部件组成的置大大
便了设计和制造过程,使得生产线行效率高。上所,气动技术正
不可替代的特,不断拓展其应领域并寻求有效的利用方式。
气动技术作为实现动化的一手段,与技术相比,有以下优[2]
1空气随之不避免购买储存运输用和麻烦
用后的空气可以直接排入大气,对环境无污染即使泄漏,也不会像液
样污染
2相比,空气度小,因此对于内流动,压缩空气受到的
力小压力损失小,有利于远距离输送中供气,且不易造管路阻塞。
3压传动相比,气压传动动作速,气动元件维护简单。
4恶劣工作环下,易燃易爆辐射等应用场合,气
动系统的安全性和可靠性优于压和电气系统。
5空气的可压缩性能够实现气动系统的动过载保护,而且便于压缩后
储存起来,间又能以备急需
6压缩空气气时体积膨胀成的恰好使气动设
降温,系统间运行也不发生过现象。
7气动元件结构相对单容易制造,且于系化、标准化。
然而,气动技术也并非尽善尽美,相比于技术存在以下劣势
1
摘要:

气动电磁阀流量特性与节能关系研究摘要节能的重要性近些年越来越受到广泛关注,因此能量利用率较低的气动系统节能研究意义愈加凸显,而作为气动系统重要组成部分的电磁阀也是节能研究的内容之一。本文针对压缩空气通过气动电磁阀的能量损失与流量特性参数临界压力比b的关系进行了理论分析和试验研究,然后通过仿真手段寻求提高b值达到节能效果的流道结构优化方案。首先引入压缩空气能量损失评价指标——火用,通过理论分析推导出单位质量流量压缩空气通过电磁阀的火用损计算公式,并讨论了火用损的影响因素。试验部分选用声速流导C值相同但b值不同的两个电磁阀作为被测对象,通过测量电磁阀上下游的压力值p2和p1来计算b值差异对压缩空气...

展开>> 收起<<
气动电磁阀流量特性与节能关系研究.doc

共64页,预览7页

还剩页未读, 继续阅读

作者:高德中 分类:高等教育资料 价格:15积分 属性:64 页 大小:5.1MB 格式:DOC 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 64
客服
关注