奇异拟线性椭圆方程解的存在性

VIP免费
3.0 高德中 2024-11-19 5 4 502.43KB 36 页 15积分
侵权投诉
摘 要
本文主要借助 Shapiro V L 在加权空间中建立的 Sobolev 嵌入定理,利用
Galerkin 方法及推广的 Brouwer 定理分别讨论了加权奇异拟线性椭圆方程非平凡解
的存在性问题及含扰动项的加权奇异拟线性椭圆方程共振问题,并得到了一系列
有价值的结论.论文共分四章.
第一章中,主要概述了非线性偏微分方程问题的研究背景、研究目的以及现
阶段非线性偏微分方程问题研究的先进水平. 同时,本章还介绍了本文所得到的
研究成果.
第二章中,主要介绍了预备知识,即本文证明过程中所要使用的关键定理及
重要不等式.
第三章中,通过引入 Shapiro V L 建立的非线性算子与线性算子之间#-关系的
概念,利用 Galerkin 方法,得到了加权奇异拟线性椭圆方程
( , ) , ,
0,
u f x u x
u x
 
 
Q
的非平凡解的存在性定理,这里
1 1
2 2
0 0
, 1
( ( ) ( ) )
N
i i j i j ij j
i j
u D p p u u b D u b u
 
 
Q
非线性项满足线性增长条件.
第四章中,通过引入近特征值的概念,在非线性算子与线性算子间满足*-
广Landersman-Lazer Galerkin Brouwer
定理及 Shapiro V L 建立的 Sobolev 嵌入定理,得到了含扰动项的加权奇异拟线性
椭圆方程
1( , ) ( , ) , ,
0,
u u b x u u f x u G x
u x
 
 
 
M
非平凡解的存在性定理,这里
1 1 1 1
2 2 2 2
0 0
, 1
( ( ) ( ) )
N
i i j i j ij j
i j
u D p p u u a D u a qu
 
 
M
1
是关于算子
M
的近特征值. Shapiro V L “Singular Quasilinearity and
Higher Eigenvalues”对算
M
进行了广泛的研究,而本章改进Shapiro V L
在关于算子
M
证明中所需要的##-相关等条件,借助*-相关对一类含扰动项的加权
奇异拟线性椭圆方程非平凡解的存在性问题进行证明,得到了更具一般性的结论.
关键词: Sobolev 空间 奇异拟线性椭圆方程 Galerkin 方法
Brouwer 定理 近特征值 Landersman-Lazer 条件
ABSTRACT
In this paper we discuss the existence of nontrivial solutions for a kind of
weighted quasilinear elliptic equations and the resonance problem for a kind of
weighted quasilinear elliptic equations with disturbance term in weighted Sobolev
spaces. Thensome useful results have been obtained by using Galerkin methodthe
generalized Brouwers theorem and a weighted compact Sobolev-type embedding
theorem established by Shapiro V L. The paper is separated into 4 chapters.
In Chapter 1we mainly introduce the background and the purposes for the study
of the nonlinear partial differential equations. Meanwhilethe main achievements and
the advanced levels at the present stage are provided. Also a synopsis of the main
results from this paper are included.
In Chapter 2for the need of our proofwe provide some key theorems and basic
inequalities.
In Chapter 3 we prove the existence of nontrivial solutions for the weighted
singular quasilinear elliptic equation
( , ) , ,
0,
Qu f x u x
u x
 
 
by using the definition of the #-relationship between the nonlinear operator and the
linear operator by Shapiro V L Galerkin methods and the generalized Brouwer’s
theoremwhere
the nonlinear term satisfies the linear growth condition.
In Chapter 4we prove the existence of nontrivial solutions for a kind of weighted
singular quasilinear elliptic equations with disturbance term
1( , ) ( , ) , ,
0,
u u b x u u f x u G x
u x
 
 
 
M
where
1 1 1 1
2 2 2 2
0 0
, 1
( ( ) ( ) ) .
N
i i j i j ij j
i j
u D p p u u b D u b qu
 
 
M
The result is obtained by using *-relationship between the nonlinear operator and the
linear operator Galerkin methods the generalized Brouwer’s theorem and a new
weighted compact Sobolev-type embedding theorem established by Shapiro V L under
the generalized Landesman-Lazer conditions. The notation of near-eigenvalue
established by Shapiro V L is used where
1
is the near-eigenvalue of
M
. The
operator
M
has been studied widely in “Singular Quasilinearity and Higher
Eigenvales” by Shapiro V L. We get more general conclution by *-relationship in place
of ##-relationship.
Key Words: Weighted Sobolev SpacesSingular quasilinear elliptic
equationsLandersman-Lazer type conditionsGalerkin
methodBrouwer’s theoremNear-eigenvalue
摘要:

摘要本文主要借助ShapiroVL在加权空间中建立的Sobolev嵌入定理,利用Galerkin方法及推广的Brouwer定理分别讨论了加权奇异拟线性椭圆方程非平凡解的存在性问题及含扰动项的加权奇异拟线性椭圆方程共振问题,并得到了一系列有价值的结论.论文共分四章.第一章中,主要概述了非线性偏微分方程问题的研究背景、研究目的以及现阶段非线性偏微分方程问题研究的先进水平.同时,本章还介绍了本文所得到的研究成果.第二章中,主要介绍了预备知识,即本文证明过程中所要使用的关键定理及重要不等式.第三章中,通过引入ShapiroVL建立的非线性算子与线性算子之间#-关系的概念,利用Galerkin方法,得到...

展开>> 收起<<
奇异拟线性椭圆方程解的存在性.pdf

共36页,预览4页

还剩页未读, 继续阅读

作者:高德中 分类:高等教育资料 价格:15积分 属性:36 页 大小:502.43KB 格式:PDF 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 36
客服
关注