基于DSP的交流永磁同步电机伺服控制系统的研究

VIP免费
3.0 陈辉 2024-11-19 5 4 3.35MB 73 页 15积分
侵权投诉
摘 要
随着新型永磁材料的发现和永磁同步电机制造技术的不断提高,以永磁同步
电机作为控制对象的永磁伺服系统得到了越来越多的关注,永磁伺服控制系统的
研究成为了一种发展的必然趋势和当前的热点,对提高我国电气传动的水平和国
际地位具有很大的实际意义和价值。
TI 公司专用于电机控制的 TMS320LF2407A 型数字信号处理器(Digital
Signal Processor,DSP)作为核心控制器件,设计了一套永磁伺服电机控制系统,其
中包括:详细介绍了 DSP 芯片特别是 2407A 芯片的各种特点,深入的探讨研究了
永磁同步电机的结构特点,根据三种坐标系的变换关系,建立永磁同步电机在对
应坐标系中的数学模型,为控制方案的选择打下了基础。
对电压空间矢量脉宽调制技术(Space Vactor Pulse Width Modification,SVPWM)
做了详细的理论阐述和推导,并给出了基于 DSP 的硬件和软件的实现方法。空间
矢量脉宽调制技术物理概念清晰、算法简单、对直流电压利用率高,易于实现数
字化,是交流电机控制中最常用的方法之一。
采用了 id=0 的控制策略,介绍了控制系统软硬件结构和主要功能模块的原理
及其实现方法。硬件方面主要论述了 TMS320LF2407A 最小系统、相电流测量电
路、位置和速度测量电路。在硬件的基础上,软件采用了 DSP 专用的 C2000 汇编
语言,实现了位置、转速和电流的闭环矢量控制、给出了产生 SVPWM 的中断处
理流程图。并对程序中数据的格式处理、PI 控制的数字实现、速度计算方法和正
余弦函数的计算做了详细的讲解和说明。
运用 Matlab/Simulink 仿真软件对整个系统进行仿真。SVPWM 仿真模块为整
个系统的核心,文中详细的讲解了 SVPWM 实现的计算过程和组成的子模块。在
SVPWM 子系统的基础上,搭建了整个系统的仿真模型进行仿真。得到了转矩、
速、定子电流电压的仿真波形,验证了系统设计的正确性和可行性。
关键词: 永磁同步电机 空间矢量脉宽调制 数字信号处理器 仿真分
2
ABSTRACT
With the discovery of new kind of Permanent-Magnet material and development in
manufacturing Permanent-Magnet Synchronous Motor(PMSM), the PMSM control
system have accepted more and more concerns. So, the research of PMSN control
system must be a kind of inevitable development trend and the focus in the future, and it
has great value and important meanings for Chinese researchers and the industry control.
This paper uses TMS320LF2407A type of Digital Signal Processor (DSP) as the core,
which is designed to be special-purpose on motor control by TI Company, and designs a
set of control system for PMSM. The jobs that have been done include followings:
The structure of PMSM is studied further and more deeply. The mathematic models
in three types of reference frames are set up according to their relationship.SVPWM
modulation is discussed thoroughly. Its realization methods with hardware and software
are given respectively. The methods are of clarity of conception, simple of arithmetic,
high utilization of DC voltage, especially ease of being reailzed by digitization.
The control strategy is id=0. The hardware and software are designed. The
components of hardware are TMS320LF2407A DSP, current measure circuit, position
and speed measure circuit, and so on. The software is written by C2000 assembly
language, which realizes the position, speed and current close-loop control. The flow
chart of interrupt service routine is given. The format of data, PI regulation method,
speed calculation and generation of sine and cosine are explained in details.
The simulation of control system is set up by use of Matlab/Simulink. All subsystems,
especially SVPWM, are given. The simulation results show the correction and
feasibility of the design.
Key Words: PMSM, SVPWM, DSP, SIMULINK
目 录
中文摘要
ABSTRACT
第一章 ····················································································· 1
§1.1 背景与意义 ··············································································· 1
§1.2 永磁同步电机伺服系统研究现状及趋势 ···········································2
§1.3 本文的主要工作 ········································································· 4
第二章 DSP 芯片的基本结构和特征 ··························································6
§2.1 DSP 芯片的基本结构和特征 ·························································· 6
§2.1.1 哈佛结构 ············································································· 6
§2.1.2 流水线操作 ·········································································· 7
§2.1.3 专用的硬件乘法器 ································································· 8
§2.1.4 特殊的 DSP 指令 ··································································· 8
§2.1.5 快速的指令周期 ···································································· 8
§2.2 TMS320LF2407A DSP ·································································· 8
§2.2.1 通用 I/O 引脚 ········································································9
§2.2.2 PWM 模块 ···········································································10
§2.2.3 ADC 单元及应用 ·································································· 12
§2.2.4 正交编码脉冲电路(QEP) ························································13
§2.2.5 捕获单元(CAP) ···································································· 15
§2.2.6 串行通信接口(SCI) ······························································· 15
§2.3 DSP 系统的结构特点 ··································································16
第三章 永磁同步电机结构及其数学模型 ·················································· 18
§3.1 永磁同步电动机的结构 ······························································ 18
§3.2 永磁伺服电动机的数学模型 ························································ 19
§3.2.1 永磁同步电机在静止坐标系(UVW)上的模型 ······························ 19
§3.2.2 永磁同步电机在两相静止坐标系(
)上的模型方程 ············· 21
§3.2.3 永磁同步电机在旋转坐标系上(
pd
)的数学模型 ····················24
第四章 空间矢量脉宽调制原理及实现 ····················································· 28
§4.1 电压空间矢量 SVPWM 技术的基本原理 ·········································28
2
§4.1.1 电压矢量与磁链矢量的关系 ··················································· 28
§4.1.2 基本电压空间矢量 ································································29
§4.1.3 磁链轨迹的控制 ···································································32
§4.1.4
1
t
2
t
0
t
的计算 ·································································34
§4.1.5 扇区号的确定 ······································································35
§4.2 电压空间矢量技术的 DSP 实现方法 ·············································· 35
§4.2.1 通过软件实现电压空间矢量 PWM 的编程方法 ····························36
§4.2.2 通过硬件实现电压空间矢量 PWM ··········································· 36
第五章 控制策略和硬软件设计 ······························································ 41
§5.1 永磁同步电机的控制策略 ··························································· 41
§5.2 系统硬件实现 ·········································································· 41
§5.2.1 控制电路 ············································································42
§5.2.2 逆变电路 ············································································43
§5.2.3 相电流的检测电路 ································································44
§5.2.4 转速、转角检测电路 ·····························································45
§5.3 系统软件设计 ·········································································· 46
§5.3.1 系统软件设计的概述和原则 ··················································· 46
§5.3.2 系统初始化设置 ···································································47
§5.3.3 数据采集模块 ······································································48
§5.3.4 故障处理模块 ······································································48
§5.3.5 主程序结构与中断服务模块 ··················································· 50
§5.3.6 数据格式处理 ······································································51
§5.3.7 数字 PI 算法 ········································································52
§5.3.8 正余弦值的计算 ···································································53
§5.3.9 速度的计算 ·········································································54
第六章 基于 MATLAB 的永磁同步电机伺服系统仿真 ································· 55
§6.1 仿真平台概述 ·········································································· 55
§6.2 系统组成及仿真 ······································································· 56
§6.2.1 SVPWM 子模块的仿真 ···························································56
§6.2.2 系统整体仿真 ······································································60
§6.3 仿真结果 ·················································································61
第七章 总结与展望 ··············································································66
第一章 绪论
1
第一章 绪 论
伺服系统常用于快速、精密的位置控制、速度控制以及运动轨迹控制等场合,
它主要控制被控对象的转角或位移,使其能自动地、连续地、精确地复现输入指
令的变化规律[1]比如:机器人手臂各关节的运动控制;计算机中硬盘、软盘和光
驱中的读写头的位置控制;仿形铣床中铣刀与被加工工件之间相对运动轨迹的控
制;跟踪雷达天线俯仰角、方位角的自动瞄准运动控制等等。
§1.1 背景与意义
目前,伺服驱动已由直流(DC)伺服电动机成功转向交流(AC)伺服电动机,随
之产生的交流伺服技术己成为工厂自动化领域中运动控制技术的主流。交流伺服
驱动系统的控制精度、可靠性、控制灵敏度都得到了大大的提高[2~4]
直流电动机采用的是机械式换向且存在电刷,决定其在应用过程中存在着一
些难以克服的缺点,极大地限制了其在高速度、高精度、高性能和免维护要求的
伺服驱动场合的应用。为此,多年来人们一直在寻求以交流伺服电动机取代具有
机械换向器和电刷结构的直流伺服电动机以满足各种应用领域,尤其是高精度、
高性能伺服驱动领域的需要。而自 20 80 年代以来,随着电机技术、现代电
力电子技术、微电子技术、现代控制技术以及计算机技术等支撑技术的快速发展,
极大地推进了交流伺服驱动技术的研究。
时至今日,伺服驱动技术正朝着交流化、数字化的方向迅速发展,使得先前
困扰着交流伺服电动机的控制复杂、调速性能差等问题的研究取得了突破性的进
展,交流伺服系统的性能也日渐提高。具有代表性的标志是:高分辨率的速度与
位置传感器和稀土永磁转子电机组成一体化的结构;主电路采用高频大功率开关
组件组成 SVPWM(SVPWM:Space Vector Pulse Width Modulation)逆变器;控制回路
采用高速的数字信号处理(DSP:Digital Signal Processors)可以高速、高精度地完成
各种复杂控制算法;智能控制理论的某些成果己成功应用于交流伺服系统,为传
统伺服系统性能所不能比拟。因而交流伺服系统取代直流伺服系统尤其是在高精
度、高柔性、高响应能力和高可靠性要求的伺服驱动领域成了现代电伺服驱动系
统的必然发展趋势[5~6]
用在位置伺服系统领域的永磁无刷同步电动机,按照电动机反电动势波形分
为两类:梯形波电动机和正弦波电动机。它们共同的特点是定子电流的通断受转
子上的位置传感器控制,不同之处在于二者的磁场分布和反电动势波形。方波电
基于 DSP 的交流永磁同步电机伺服控制系统的研究
2
动机与有刷直流电动机的工作原理相似,不同处在于它用电子开关电路和转子位
置传感器取代了有刷支流电动机的换向器和电刷,实现了直流电动机的无刷化,
同时保持了直流电动机的良好控制特性,故该类方波电动机人们习惯称为无刷直
流电动机(BLCDM-Brushless DCMotor)正弦波电动机的定子绕组得到的是对称三
相交流电,但三相交流电的频率、相位和幅值由转子位置信号决定,通常所说的
永磁同步电动机(PMSM-Permanent Magnet SynchronousMotor)即是这种电动机。它
的转子位置检测通常使用旋转变压器或光电编码器,可更精确的获得瞬间转子位
置信息。因其控制性能、控制精度和转矩的平稳性以及造价都较无刷直流电动机
系统为好,故主要用于柔性制造系统、机器人、办公自动化、数控机床、电梯调
速等高性能驱动领域。
而采用永磁同步电机(PMSM)的交流伺服系统又是目前高性能伺服的主流方
向。由于永磁同步电机是多变量、强耦合的非线性系统,转矩控制也较其他电机
困难,并且要求控制系统具有很强的实时性,同时,控制算法也日益复杂化,要
求控制系统的计算芯片应该具有较快的计算速度。目前,由于单片机的速度和功
能有限,难以实现复杂的控制算法,采用单片机为控制核心的伺服系统,其控制
性能的提高受到了一定的限制。主要表现为:首先是电流环和速度环的采样周期
间较长,降低了系统的调节频率,系统的动态性能随之下降;其次,由于单片机
不能产生空间电压矢量脉冲调制信号(SVPWM)。因此,采用单片机来实现目前流
行的 SVPWM 技术困难重重。计算机技术特别是数字信号处理器(DSP)技术的发展
为先进控制理论提供了有利的支持,为高性能伺服系统的实现奠定了基础。由于
DSP 采用了多总线的哈佛结构、专用的硬件乘法器(一个周期内完成乘法和加法两
种运算)、多级流水线操作和专用的 DSP 指令等方法使其获得了高速并行处理能
力,能够实时地完成各种复杂的控制算法[7]所以,DSP 己成为高性能处理器的首
选器件。
§1.2 永磁同步电机伺服系统研究现状及趋势
交流伺服驱动根据数字化程度来分,经历了模拟式、数字模拟混合式到全数
字式发展过程。模拟式伺服系统具有响应快、容易随时把握系统工作基本情况等
特征,但是也存在以下缺点:
1) 微弱信号信噪分离困难,很难将控制精度提高到 1%以上的级别;
2) 在零点附近容易受到温度漂移的影响,使位置控制产生零点漂移误差。
由于模拟系统的这种本质缺陷,使它很难满足高精度伺服控制的要求。随着
摘要:

摘要随着新型永磁材料的发现和永磁同步电机制造技术的不断提高,以永磁同步电机作为控制对象的永磁伺服系统得到了越来越多的关注,永磁伺服控制系统的研究成为了一种发展的必然趋势和当前的热点,对提高我国电气传动的水平和国际地位具有很大的实际意义和价值。以TI公司专用于电机控制的TMS320LF2407A型数字信号处理器(DigitalSignalProcessor,DSP)作为核心控制器件,设计了一套永磁伺服电机控制系统,其中包括:详细介绍了DSP芯片特别是2407A芯片的各种特点,深入的探讨研究了永磁同步电机的结构特点,根据三种坐标系的变换关系,建立永磁同步电机在对应坐标系中的数学模型,为控制方案的选...

展开>> 收起<<
基于DSP的交流永磁同步电机伺服控制系统的研究.pdf

共73页,预览8页

还剩页未读, 继续阅读

作者:陈辉 分类:高等教育资料 价格:15积分 属性:73 页 大小:3.35MB 格式:PDF 时间:2024-11-19

开通VIP享超值会员特权

  • 多端同步记录
  • 高速下载文档
  • 免费文档工具
  • 分享文档赚钱
  • 每日登录抽奖
  • 优质衍生服务
/ 73
客服
关注