基于WSN的无线冗余时间触发构架的总线研究
VIP免费
I
摘要
传统的总线形式一般有基于事件触发和时间触发这两种形式,事件触发虽然
灵活性较高,但是时间确定性和可靠性得不到保证,时间触发机制能提供确定的
网络行为并具有一定的容错能力,但其灵活性很差。于是本实验室之前提出了无
线冗余时间触发构架的思想,即用一条无线信道代替一条冗余的总线信道,形成
每个通信节点拥有一条有线总线信道和一条无线冗余信道的拓扑模型,有线总线
上传输且始终传输状态信息,而在无线信道上没有事件信息发生时和总线上传送
相同的状态信息,如果节点检测到有事件发生,那么立刻在无线信道上传送事件
信息。
在理论上已经证明了该构架对传统总线形式在性能上的提升,但是其工作的
前提有些理想化,并且适用范围较为单一,所以针对该构架的不足之处,在其无
线部分引入了在无线传感器网络方面的思想与技术,以期在性能以及可实现性方
面对之前的研究工作有进一步的提升。
首先,本文在无线信道上使用了一种新型的路由协议,利用了 ZRP 协议的集
群结构,构造了一套新的路由工作方式。即在区域内路由协议中采用 DSDV 协议,
使下层节点的传输延迟有一定的保障且保证下层节点协议的简单性,在区域间路
由协议中使用 SPEED 这一能够保证传输延迟及可靠性的路由协议,通过仿真后证
明其在端到端延迟、丢包率、能量消耗方面都有比原有路由协议有更好的表现。
其次,在网络拥塞控制中的队列管理上使用了 ARED 算法,考虑到当某些链
路上的节点出现故障的情况下,其他的链路上的负载将会相应加重,所以经过在
重负载模型下的测试后,证明了相比现在常用的 RED 算法,其在丢包率、延迟、
吞吐量上的性能更为出色。
最后,在 WSN 的支撑技术的使用方面,利用现有 WSN 的数据融合方法以及
安全系统中的拜占庭将军问题,提出了一种新的基于 OM 算法与贝叶斯检测算法
的容错检测算法,
OM 算法的引入可以使得在使用贝叶斯检测算法时保证区域内节
点都尽可能基于同样的公共信息做出判定,这样可以杜绝在判断时发生不一致的
现象。该容错检测算法可以在故障率 10%时达到 90%以上的故障减少率,从而可
以大大减少故障对节点的影响以及保证节点判断的一致性。
关键词:无线传感器网络 实时路由协议 队列管理 容错检测算法
II
ABSTRACT
Traditional fieldbus is usually based on two forms such as event-triggered and
time-triggered. Although the event-triggered form has a good perform of flexibility,but
its time deterministic and reliability can not work well. On the other hand, the
time-triggered form can supply good time deterministic and reliability but its flexibility
is poor. Our laboratory has put forward the wireless redundancy time-triggered
communication structure, it provides a wireless redundant channel to replace the backup
bus channel. Then the topological model is that each node has a bus channel and a
backup wireless communication channel. The bus channel always transmits state
messages, the wireless communication channel transmits state messages like the bus
channel, as long as there are no event messages. Once event occurrs, it responds to
transmit event messages in no time.
Theoretically we have proved that this kind of structure can improve the
performance of the traditional bus. But some premises are idealized. For the lack of
these points, the paper introduced the technology of wireless sensor networks into the
wireless communication to make a improvement on some aspects of performance.
Firstly, the paper introduces a new routing protocol into the wireless channel. The
new routing protocol takes the full advantage of ZRP protocol, DSDV protocol and
SPEED protocol, it uses DSDV protocol in the bottom layer and SPEED protocol in the
top layer which can guarantee the delay in the bottom layer and the reliability in the top
layer. With the simulation, the paper proves that this routing protocol has a better
performance on delay, miss ratio and energy consumption.
Secondly, the paper uses the ARED algorithm in congestion control. Sometimes
some nodes of the net may break down, and it will make the load of the other nodes
more heavier. We uses NS-2 making a simulation that the ARED algorithm has a better
performance on miss ratio, delay and throughput than RED algorithm when they are in
the same heavy load.
Finally, on the aspect of support technology, the paper provides a new algorithm
for fault-tolerant event detection with the data fusion technology of WSN and the
Byzantine general problem which is always used in security system. This algorithm can
prevent the disagreement of the sensor nodes’ judgement because of the usage of the
OM algorithm and the Bayesian algorithm for fault-tolerant event detection. With the
III
simulation, we can get that more than 90% when the fault nodes are corrected when the
fault rate is about 90%, so it can reduce a large quantity of fault nodes under the premise
of the agreement of sensor nodes’ judgement.
Key Words: Wireless sensor networks, Real-time routing protocol,
Queue management, Fault-tolerant detection algorithm
IV
目录
中文摘要
ABSTRACT
第一章 绪 论...................................................................................................................1
§1.1 无线传感器网络的发展与应用........................................................................1
§1.1.1 WSN 的发展历程 ....................................................................................1
§1.1.2 WSN 的应用 ............................................................................................2
§1.2 无线冗余时间触发构架....................................................................................4
§1.3 课题的来源及意义............................................................................................5
§1.4 课题主要研究内容............................................................................................7
第二章 无线传感器网络体系结构及相关理论基础.....................................................8
§2.1 WSN 体系结构及特征 ......................................................................................8
§2.1.1 WSN 网络结构 ........................................................................................8
§2.1.2 WSN 节点结构 ........................................................................................9
§2.1.3 WSN 协议栈 ..........................................................................................10
§2.1.4 WSN 的特点 .......................................................................................... 11
§2.2.2 WSN 的限制 ..........................................................................................12
§2.2 传统 WSN 路由协议 .......................................................................................13
§2.2.1 能量感知路由协议................................................................................14
§2.2.2 反应式路由协议....................................................................................15
§2.2.3 地理位置路由协议................................................................................17
§2.2.4 集群结构的路由协议............................................................................17
§2.3 WSN 服务质量 ................................................................................................18
§2.3.1 服务质量的定义....................................................................................19
§2.3.2 WSN 针对 QoS 的研究 .........................................................................20
§2.3.3 WSN 中的 QoS 关键技术 .....................................................................20
§2.4 WSN 的关键支撑技术 ....................................................................................21
§2.4.1 数据融合概述........................................................................................21
§2.4.2 数据融合的结构分类............................................................................22
§2.4.3 数据融合的形式分类............................................................................23
§2.5 本章小结..........................................................................................................24
第三章 基于 ZRP 结构的表驱动实时路由协议 ......................................................... 25
V
§3.1 ZRP 体系结构 ................................................................................................. 25
§3.1.1 ZRP 工作原理 ....................................................................................... 26
§3.1.2 ZRP 的特点 ........................................................................................... 27
§3.2 基于 ZRP 结构的表驱动实时路由协议的整体框架 .................................... 27
§3.3 区域间协议设计..............................................................................................28
§3.3.1 SPEED 协议结构框架 .......................................................................... 29
§3.3.2 API 函数及数据包格式 ........................................................................ 29
§3.3.3 延迟估计方案........................................................................................30
§3.3.4 SNGF 算法 ............................................................................................ 30
§3.3.5 邻居反馈环机制....................................................................................31
§3.3.6 压力反馈路由变更机制........................................................................32
§3.3.7 路由空洞的避免....................................................................................34
§3.4 区域内路由协议设计......................................................................................35
§3.5 基于 ZRP 结构的表驱动实时路由协议的仿真测试 .................................... 37
§3.5.1 仿真参数及性能指标............................................................................37
§3.5.2 仿真结果及分析....................................................................................38
§3.6 本章小结..........................................................................................................42
第四章 拥塞控制中的队列管理算法研究...................................................................43
§4.1 网络拥塞问题..................................................................................................43
§4.1.1 网络拥塞的直接原因............................................................................43
§4.1.2 网络拥塞导致的结果............................................................................43
§4.2 队列管理算法..................................................................................................44
§4.3 Droptail 算法 ................................................................................................... 45
§4.4 RED 算法 .........................................................................................................45
§4.5 自适应 RED 算法 ............................................................................................49
§4.6 自适应 RED 算法在重负载下的性能分析 ....................................................50
§4.6.1 网络仿真模型........................................................................................50
§4.6.2 仿真及性能分析....................................................................................50
§4.7 本章小结..........................................................................................................54
第五章 数据融合中的容错性设计...............................................................................55
§5.1 拜占庭故障......................................................................................................55
§5.1.1 拜占庭将军问题....................................................................................55
§5.1.2 拜占庭将军问题的可解性....................................................................57
VI
§5.2 OM 算法.......................................................................................................... 58
§5.3 基于 OM 的新型值融合算法......................................................................... 61
§5.3.1 空间相关性............................................................................................61
§5.3.2 贝叶斯容错事件检测算法....................................................................62
§5.3.3 基于 OM 与贝叶斯容错事件检测算法的值融合算法....................... 64
§5.3.4 基于 OM 与贝叶斯容错事件检测算法的值融合算法的性能分析... 65
§5.4 本章小结..........................................................................................................71
第六章 结论与展望.......................................................................................................72
§6.1 课题工作总结..................................................................................................72
§6.2 课题研究展望..................................................................................................72
参考文献.........................................................................................................................74
附录.................................................................................................................................78
在读期间公开发表的论文和承担科研项目及取得成果.............................................87
致 谢.............................................................................................................................88
摘要:
展开>>
收起<<
I摘要传统的总线形式一般有基于事件触发和时间触发这两种形式,事件触发虽然灵活性较高,但是时间确定性和可靠性得不到保证,时间触发机制能提供确定的网络行为并具有一定的容错能力,但其灵活性很差。于是本实验室之前提出了无线冗余时间触发构架的思想,即用一条无线信道代替一条冗余的总线信道,形成每个通信节点拥有一条有线总线信道和一条无线冗余信道的拓扑模型,有线总线上传输且始终传输状态信息,而在无线信道上没有事件信息发生时和总线上传送相同的状态信息,如果节点检测到有事件发生,那么立刻在无线信道上传送事件信息。在理论上已经证明了该构架对传统总线形式在性能上的提升,但是其工作的前提有些理想化,并且适用范围较为单一...
相关推荐
作者:陈辉
分类:高等教育资料
价格:15积分
属性:92 页
大小:4.7MB
格式:PDF
时间:2024-11-19